Files
USBvalve/USBvalve/USBvalve.ino
2024-10-27 22:07:03 +01:00

751 lines
23 KiB
C++

/*********************************************************************
USBvalve
written by Cesare Pizzi
This project extensively reuse code done by Adafruit and TinyUSB.
Please support them!
*********************************************************************/
/*********************************************************************
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
MIT license, check LICENSE for more information
Copyright (c) 2019 Ha Thach for Adafruit Industries
All text above, and the splash screen below must be included in
any redistribution
*********************************************************************/
// Uncomment the following to compile for the RP2040 based TFT round display
// https://www.raspberrypi.com/news/how-to-build-your-own-raspberry-pi-watch/
//#define PIWATCH
#include <pio_usb.h>
#include "Adafruit_TinyUSB.h"
#include <XxHash_arduino.h>
#include <pico/stdlib.h>
#if defined(PIWATCH)
#include <Arduino_GFX_Library.h>
#include "background.h"
#else
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
// LED Pin. If solid GREEN everything is OK, otherwise it will be put OFF
#define LED_PIN 25
#endif
//
// BADUSB detector section
//
/*
* Requirements:
* - [Pico-PIO-USB](https://github.com/sekigon-gonnoc/Pico-PIO-USB) library
* - 2 consecutive GPIOs: D+ is defined by HOST_PIN_DP (gpio2), D- = D+ +1 (gpio3)
* - CPU Speed must be either 120 or 240 Mhz. Selected via "Menu -> CPU Speed"
*/
#define HOST_PIN_DP 14 // Pin used as D+ for host, D- = D+ + 1
#define LANGUAGE_ID 0x0409 // English
// USB Host object
Adafruit_USBH_Host USBHost;
// END of BADUSB detector section
// Define vars for OLED screen
#if defined(PIWATCH)
#define GFX_DC 8
#define GFX_CS 9
#define GFX_MOSI 11
#define GFX_CLK 10
#define GFX_RST 12
#define GFX_MISO 12
#define GFX_BL 25 // Backlight
Arduino_DataBus *bus = new Arduino_RPiPicoSPI(GFX_DC, GFX_CS, GFX_CLK, GFX_MOSI, GFX_MISO, spi1 /* spi */);
Arduino_GFX *gfx = new Arduino_GC9A01(bus, GFX_RST, 1 /* rotation */, true /* IPS */);
#else
#define I2C_ADDRESS 0x3C // 0X3C+SA0 - 0x3C or 0x3D
#define RST_PIN -1 // Define proper RST_PIN if required.
#define OLED_WIDTH 128
#define OLED_HEIGHT 32 // 64 or 32 depending on the OLED
Adafruit_SSD1306 display(OLED_WIDTH, OLED_HEIGHT, &Wire, RST_PIN);
#endif
// Define the dimension of RAM DISK. We have a "real" one (for which
// a real array is created) and a "fake" one, presented to the OS
#define DISK_BLOCK_NUM 0x150
#define FAKE_DISK_BLOCK_NUM 0x800
#define DISK_BLOCK_SIZE 0x200
#include "ramdisk.h"
Adafruit_USBD_MSC usb_msc;
// Eject button to demonstrate medium is not ready e.g SDCard is not present
// whenever this button is pressed and hold, it will report to host as not ready
#if defined(ARDUINO_SAMD_CIRCUITPLAYGROUND_EXPRESS) || defined(ARDUINO_NRF52840_CIRCUITPLAY)
#define BTN_EJECT 4 // Left Button
bool activeState = true;
#elif defined(ARDUINO_FUNHOUSE_ESP32S2)
#define BTN_EJECT BUTTON_DOWN
bool activeState = true;
#elif defined PIN_BUTTON1
#define BTN_EJECT PIN_BUTTON1
bool activeState = false;
#endif
//
// USBvalve globals
//
#define VERSION "USBvalve - 0.19.1"
boolean readme = false;
boolean autorun = false;
boolean written = false;
boolean deleted = false;
boolean written_reported = false;
boolean deleted_reported = false;
boolean hid_sent = false;
boolean hid_reported = false;
//
// Anti-Detection settings.
//
// Set USB IDs strings and numbers, to avoid possible detections.
// Remember that you can cusotmize FAKE_DISK_BLOCK_NUM as well
// for the same reason. Also DISK_LABEL in ramdisk.h can be changed.
//
// You can see here for inspiration: https://the-sz.com/products/usbid/
//
// Example:
// 0x0951 0x16D5 VENDORID_STR: Kingston PRODUCTID_STR: DataTraveler
//
#define USB_VENDORID 0x0951 // This override the Pi Pico default 0x2E8A
#define USB_PRODUCTID 0x16D5 // This override the Pi Pico default 0x000A
#define USB_DESCRIPTOR "DataTraveler" // This override the Pi Pico default "Pico"
#define USB_MANUF "Kingston" // This override the Pi Pico default "Raspberry Pi"
#define USB_SERIAL "123456789A" // This override the Pi Pico default. Disabled by default. \
// See "setSerialDescriptor" in setup() if needed
#define USB_VENDORID_STR "Kingston" // Up to 8 chars
#define USB_PRODUCTID_STR "DataTraveler" // Up to 16 chars
#define USB_VERSION_STR "1.0" // Up to 4 chars
#define BLOCK_AUTORUN 102 // Block where Autorun.inf file is saved
#define BLOCK_README 100 // Block where README.txt file is saved
#define MAX_DUMP_BYTES 16 // Used by the dump of the debug facility: do not increase this too much
#define BYTES_TO_HASH 512 * 2 // Number of bytes of the RAM disk used to check consistency
#define BYTES_TO_HASH_OFFSET 7 // Starting sector to check for consistency (FAT_DIRECTORY is 7)
// Burned hash to check consistency
uint valid_hash = 2362816530;
// Core 0 Setup: will be used for the USB mass device functions
void setup() {
// Change all the USB Pico settings
TinyUSBDevice.setID(USB_VENDORID, USB_PRODUCTID);
TinyUSBDevice.setProductDescriptor(USB_DESCRIPTOR);
TinyUSBDevice.setManufacturerDescriptor(USB_MANUF);
// This could be used to change the serial number as well
// TinyUSBDevice.setSerialDescriptor(USB_SERIAL);
#if defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040)
// Manual begin() is required on core without built-in support for TinyUSB such as
// - mbed rp2040
TinyUSB_Device_Init(0);
#endif
// Set disk vendor id, product id and revision with string up to 8, 16, 4 characters respectively
usb_msc.setID(USB_VENDORID_STR, USB_PRODUCTID_STR, USB_VERSION_STR);
// Set disk size (using the "fake" size)
usb_msc.setCapacity(FAKE_DISK_BLOCK_NUM, DISK_BLOCK_SIZE);
// Set the callback functions
usb_msc.setReadWriteCallback(msc_read_callback, msc_write_callback, msc_flush_callback);
// Set Lun ready (RAM disk is always ready)
usb_msc.setUnitReady(true);
#ifdef BTN_EJECT
pinMode(BTN_EJECT, activeState ? INPUT_PULLDOWN : INPUT_PULLUP);
usb_msc.setReadyCallback(msc_ready_callback);
#endif
// Check consistency of RAM FS
// Add 11 bytes to skip the DISK_LABEL from the hashing
// The startup of the USB has been moved before initialization of the
// screen because sometimes it inserts some delay preventing
// proper initialization of the mass device
uint computed_hash;
computed_hash = XXH32(msc_disk[BYTES_TO_HASH_OFFSET] + 11, BYTES_TO_HASH, 0);
if (computed_hash == valid_hash) {
usb_msc.begin();
}
// Screen Init
#if defined(PIWATCH)
gfx->begin();
pinMode(GFX_BL, OUTPUT);
digitalWrite(GFX_BL, HIGH); // Backlight on
gfx->fillScreen(BLACK); // Clear screen
gfx->draw16bitRGBBitmap(10,0,background,210,210); // Draw background
delay(2000);
#else
#if RST_PIN >= 0
display.begin(SSD1306_SWITCHCAPVCC, I2C_ADDRESS, RST_PIN);
#else
display.begin(SSD1306_SWITCHCAPVCC, I2C_ADDRESS);
#endif
#endif
#if defined(PIWATCH)
gfx->setTextSize(1);
gfx->setTextColor(MAGENTA);
#else
display.setTextSize(1);
#endif
cls(); // Clear display
// Now outputs the result of the check
if (computed_hash == valid_hash) {
printout("\n[+] Selftest: OK");
} else {
printout("\n[!] Selftest: KO");
printout("\n[!] Stopping...");
while (1) {
delay(1000); // Loop forever
}
}
#if !defined(PIWATCH)
// Set up led PIN
gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT);
gpio_put(LED_PIN, 1);
#endif
}
// Core 1 Setup: will be used for the USB host functions for BADUSB detector
void setup1() {
// Set a custom clock (multiple of 12Mhz) to achieve maximum compatibility for HID
set_sys_clock_khz(144000, true);
pio_usb_configuration_t pio_cfg = PIO_USB_DEFAULT_CONFIG;
pio_cfg.pin_dp = HOST_PIN_DP;
USBHost.configure_pio_usb(1, &pio_cfg);
// run host stack on controller (rhport) 1
// Note: For rp2040 pico-pio-usb, calling USBHost.begin() on core1 will have most of the
// host bit-banging processing works done in core1
USBHost.begin(1);
}
// Main Core0 loop: managing display
void loop() {
if (readme == true) {
printout("\n[!] README (R)");
readme = false;
#if !defined(PIWATCH)
gpio_put(LED_PIN, 0); // Turn Off LED
#endif
}
if (autorun == true) {
printout("\n[+] AUTORUN (R)");
autorun = false;
}
if (deleted == true && deleted_reported == false) {
printout("\n[!] DELETING");
deleted = false;
deleted_reported = true;
#if !defined(PIWATCH)
gpio_put(LED_PIN, 0); // Turn Off LED
#endif
}
if (written == true && written_reported == false) {
printout("\n[!] WRITING");
written = false;
written_reported = true;
#if !defined(PIWATCH)
gpio_put(LED_PIN, 0); // Turn Off LED
#endif
}
if (hid_sent == true && hid_reported == false) {
printout("\n[!!] HID Sending data");
hid_sent = false;
hid_reported = true;
#if !defined(PIWATCH)
gpio_put(LED_PIN, 0); // Turn Off LED
#endif
}
if (BOOTSEL) {
printout("\n[+] RESETTING");
swreset();
}
}
// Main Core1 loop: managing USB Host
void loop1() {
USBHost.task();
}
// Callback invoked when received READ10 command.
// Copy disk's data to buffer (up to bufsize) and
// return number of copied bytes (must be multiple of block size).
// This happens only for the "real" size of disk
int32_t msc_read_callback(uint32_t lba, void* buffer, uint32_t bufsize) {
// Check for README.TXT
if (lba == BLOCK_README) {
readme = true;
}
// Check for AUTORUN.INF
if (lba == BLOCK_AUTORUN) {
autorun = true;
}
// We are declaring a bigger size than what is actually allocated, so
// this is protecting our memory integrity
if (lba < DISK_BLOCK_NUM - 1) {
uint8_t const* addr = msc_disk[lba];
memcpy(buffer, addr, bufsize);
}
SerialTinyUSB.print("Read LBA: ");
SerialTinyUSB.print(lba);
SerialTinyUSB.print(" Size: ");
SerialTinyUSB.println(bufsize);
if (lba < DISK_BLOCK_NUM - 1) {
hexDump(msc_disk[lba], MAX_DUMP_BYTES);
}
SerialTinyUSB.flush();
return bufsize;
}
// Callback invoked when received WRITE10 command.
// Process data in buffer to disk's storage and
// return number of written bytes (must be multiple of block size).
// This happens only for the "real" size of disk
int32_t msc_write_callback(uint32_t lba, uint8_t* buffer, uint32_t bufsize) {
// Check for file deletion at Block 7
// The first char of filename is replaced with 0xE5, we are going
// to check for it
if (lba == 7) {
if (buffer[32] == 0xE5 || buffer[64] == 0xE5 || buffer[160] == 0xE5) {
deleted = true;
}
}
// This check for writing of space. The LBA > 10 is set to avoid some
// false positives, in particular on Windows Systems
if (lba > 10) {
written = true;
}
// We are declaring a bigger size than what is actually allocated, so
// this is protecting our memory integrity
if (lba < DISK_BLOCK_NUM - 1) {
// Writing buffer to "disk"
uint8_t* addr = msc_disk[lba];
memcpy(addr, buffer, bufsize);
}
SerialTinyUSB.print("Write LBA: ");
SerialTinyUSB.print(lba);
SerialTinyUSB.print(" Size: ");
SerialTinyUSB.println(bufsize);
if (lba < DISK_BLOCK_NUM - 1) {
hexDump(msc_disk[lba], MAX_DUMP_BYTES);
}
SerialTinyUSB.flush();
return bufsize;
}
// Callback invoked when WRITE10 command is completed (status received and accepted by host).
// used to flush any pending cache.
void msc_flush_callback(void) {
// Nothing to do
}
#ifdef BTN_EJECT
// Invoked when received Test Unit Ready command.
// return true allowing host to read/write this LUN e.g SD card inserted
bool msc_ready_callback(void) {
// button not active --> medium ready
return digitalRead(BTN_EJECT) != activeState;
}
#endif
#if defined(PIWATCH)
void printout(const char *str)
{
int y;
y = gfx->getCursorY();
// Check if we reached the end of the printable area
if (y > 120) {
cls();
y = gfx->getCursorY();
}
gfx->setCursor(70, y+10);
// Skip the newline at the beginning if used
if (str[0] == '\n') {
gfx->print(str+1);
} else {
gfx->print(str);
}
// Output on serial device
SerialTinyUSB.println(str);
}
#else
void scrollUp(uint8_t pixels) {
// Read the current content of the display, shift it up by 'pixels' rows
display.startscrollright(0x00, 0x07); // Dummy values to initiate scroll
display.stopscroll(); // Immediately stop to manually shift pixels in memory
for (int i = 0; i < display.height() - pixels; i++) {
for (int j = 0; j < display.width(); j++) {
uint8_t color = display.getPixel(j, i + pixels);
display.drawPixel(j, i, color);
}
}
// Clear the freed space after scrolling
display.fillRect(0, display.height() - pixels, display.width(), pixels, SSD1306_BLACK);
// Refresh the display to show the changes
display.display();
}
void checkAndScroll() {
// Assumes text height of 8 pixels, but check for 16 because newline is not used
if ((display.getCursorY() + 16) > display.height()) {
// Scroll up by 8 pixels
scrollUp(8);
display.setCursor(0, display.getCursorY() - 8);
}
}
void printout(const char *str)
{
checkAndScroll();
display.print(str);
display.display();
// Output on serial device
SerialTinyUSB.println(str);
}
#endif
#if defined(PIWATCH)
// Clear display
void cls(void) {
gfx->fillRoundRect(60, 70, 140, 75, 10, gfx->color565(0, 0, 0));
gfx->setCursor(70, 80);
gfx->print(VERSION);
gfx->setCursor(70, 90);
gfx->print("-----------------");
}
#else
// Clear display
void cls(void) {
display.clearDisplay();
display.setTextColor(SSD1306_WHITE);
display.setCursor(0, 0);
printout(VERSION);
printout("\n-----------------");
}
#endif
// HexDump
void hexDump(unsigned char* data, size_t size) {
char asciitab[17];
size_t i, j;
asciitab[16] = '\0';
for (i = 0; i < size; ++i) {
SerialTinyUSB.print(data[i] >> 4, HEX);
SerialTinyUSB.print(data[i] & 0x0F, HEX);
if ((data)[i] >= ' ' && (data)[i] <= '~') {
asciitab[i % 16] = (data)[i];
} else {
asciitab[i % 16] = '.';
}
if ((i + 1) % 8 == 0 || i + 1 == size) {
SerialTinyUSB.print(" ");
if ((i + 1) % 16 == 0) {
SerialTinyUSB.println(asciitab);
} else if (i + 1 == size) {
asciitab[(i + 1) % 16] = '\0';
if ((i + 1) % 16 <= 8) {
SerialTinyUSB.print(" ");
}
for (j = (i + 1) % 16; j < 16; ++j) {
SerialTinyUSB.print(" ");
}
SerialTinyUSB.print("| ");
SerialTinyUSB.println(asciitab);
}
}
}
SerialTinyUSB.println();
}
// Reset the Pico
void swreset() {
watchdog_enable(1500, 1);
while (1)
;
}
//
// BADUSB detector section
//
static uint8_t const keycode2ascii[128][2] = { HID_KEYCODE_TO_ASCII };
// Invoked when device with hid interface is mounted
void tuh_hid_mount_cb(uint8_t dev_addr, uint8_t instance, uint8_t const* desc_report, uint16_t desc_len) {
uint16_t vid, pid;
const char* protocol_str[] = { "None", "Keyboard", "Mouse" };
// Read the HID protocol
uint8_t const itf_protocol = tuh_hid_interface_protocol(dev_addr, instance);
tuh_vid_pid_get(dev_addr, &vid, &pid);
printout("\n[!!] HID Device");
#if !defined(PIWATCH)
gpio_put(LED_PIN, 0); // Turn Off LED
#endif
SerialTinyUSB.printf("HID device address = %d, instance = %d mounted\r\n", dev_addr, instance);
SerialTinyUSB.printf("VID = %04x, PID = %04x\r\n", vid, pid);
SerialTinyUSB.printf("HID Interface Protocol = %s\r\n", protocol_str[itf_protocol]);
if (!tuh_hid_receive_report(dev_addr, instance)) {
SerialTinyUSB.printf("Error: cannot request to receive report\r\n");
}
}
// Invoked when device with hid interface is un-mounted
void tuh_hid_umount_cb(uint8_t dev_addr, uint8_t instance) {
SerialTinyUSB.printf("HID device address = %d, instance = %d unmounted\r\n", dev_addr, instance);
// Reset HID sent flag
hid_sent = false;
hid_reported = false;
}
// Invoked when received report from device
void tuh_hid_report_received_cb(uint8_t dev_addr, uint8_t instance, uint8_t const* report, uint16_t len) {
static bool kbd_printed = false;
static bool mouse_printed = false;
// Used in main loop to write output to OLED
hid_sent = true;
// Read the HID protocol
uint8_t const itf_protocol = tuh_hid_interface_protocol(dev_addr, instance);
switch (itf_protocol) {
case HID_ITF_PROTOCOL_KEYBOARD:
if (kbd_printed == false) {
SerialTinyUSB.println("HID received keyboard report");
kbd_printed = true;
mouse_printed = false;
}
process_kbd_report((hid_keyboard_report_t const*)report);
break;
case HID_ITF_PROTOCOL_MOUSE:
if (kbd_printed == false) {
SerialTinyUSB.println("HID receive mouse report");
mouse_printed = true;
kbd_printed = false;
}
process_mouse_report((hid_mouse_report_t const*)report);
break;
default:
// Generic report: for the time being we use kbd for this as well
process_kbd_report((hid_keyboard_report_t const*)report);
break;
}
if (!tuh_hid_receive_report(dev_addr, instance)) {
SerialTinyUSB.println("Error: cannot request to receive report");
}
}
static inline bool find_key_in_report(hid_keyboard_report_t const* report, uint8_t keycode) {
for (uint8_t i = 0; i < 6; i++) {
if (report->keycode[i] == keycode) return true;
}
return false;
}
static void process_kbd_report(hid_keyboard_report_t const* report) {
// Previous report to check key released
static hid_keyboard_report_t prev_report = { 0, 0, { 0 } };
for (uint8_t i = 0; i < 6; i++) {
if (report->keycode[i]) {
if (find_key_in_report(&prev_report, report->keycode[i])) {
// Exist in previous report means the current key is holding
} else {
// Not existed in previous report means the current key is pressed
// Check for modifiers. It looks that in specific cases, they are not correctly recognized (probably
// for timing issues in fast input)
bool const is_shift = report->modifier & (KEYBOARD_MODIFIER_LEFTSHIFT | KEYBOARD_MODIFIER_RIGHTSHIFT);
uint8_t ch = keycode2ascii[report->keycode[i]][is_shift ? 1 : 0];
bool const is_gui = report->modifier & (KEYBOARD_MODIFIER_LEFTGUI | KEYBOARD_MODIFIER_RIGHTGUI);
if (is_gui == true) SerialTinyUSB.printf("GUI+");
bool const is_alt = report->modifier & (KEYBOARD_MODIFIER_LEFTALT | KEYBOARD_MODIFIER_RIGHTALT);
if (is_alt == true) SerialTinyUSB.printf("ALT+");
// Check for "special" keys
check_special_key(report->keycode[i]);
// Finally, print out the decoded char
SerialTinyUSB.printf("%c", ch);
if (ch == '\r') SerialTinyUSB.print("\n"); // New line for enter
fflush(stdout); // flush right away, else nanolib will wait for newline
}
}
}
prev_report = *report;
}
static void check_special_key(uint8_t code) {
if (code == HID_KEY_ARROW_RIGHT) SerialTinyUSB.print("<ARROWRIGHT>");
if (code == HID_KEY_ARROW_LEFT) SerialTinyUSB.print("<ARROWLEFT>");
if (code == HID_KEY_ARROW_DOWN) SerialTinyUSB.print("<ARROWDOWN>");
if (code == HID_KEY_ARROW_UP) SerialTinyUSB.print("<ARROWUP>");
if (code == HID_KEY_HOME) SerialTinyUSB.print("<HOME>");
if (code == HID_KEY_KEYPAD_1) SerialTinyUSB.print("<KEYPAD_1>");
if (code == HID_KEY_KEYPAD_2) SerialTinyUSB.print("<KEYPAD_2>");
if (code == HID_KEY_KEYPAD_3) SerialTinyUSB.print("<KEYPAD_3>");
if (code == HID_KEY_KEYPAD_4) SerialTinyUSB.print("<KEYPAD_4>");
if (code == HID_KEY_KEYPAD_5) SerialTinyUSB.print("<KEYPAD_5>");
if (code == HID_KEY_KEYPAD_6) SerialTinyUSB.print("<KEYPAD_6>");
if (code == HID_KEY_KEYPAD_7) SerialTinyUSB.print("<KEYPAD_7>");
if (code == HID_KEY_KEYPAD_8) SerialTinyUSB.print("<KEYPAD_8>");
if (code == HID_KEY_KEYPAD_9) SerialTinyUSB.print("<KEYPAD_9>");
if (code == HID_KEY_KEYPAD_0) SerialTinyUSB.print("<KEYPAD_0>");
if (code == HID_KEY_F1) SerialTinyUSB.print("<F1>");
if (code == HID_KEY_F2) SerialTinyUSB.print("<F2>");
if (code == HID_KEY_F3) SerialTinyUSB.print("<F3>");
if (code == HID_KEY_F4) SerialTinyUSB.print("<F4>");
if (code == HID_KEY_F5) SerialTinyUSB.print("<F5>");
if (code == HID_KEY_F6) SerialTinyUSB.print("<F6>");
if (code == HID_KEY_F7) SerialTinyUSB.print("<F7>");
if (code == HID_KEY_F8) SerialTinyUSB.print("<F8>");
if (code == HID_KEY_F9) SerialTinyUSB.print("<F9>");
if (code == HID_KEY_F10) SerialTinyUSB.print("<F10>");
if (code == HID_KEY_F11) SerialTinyUSB.print("<F11>");
if (code == HID_KEY_F12) SerialTinyUSB.print("<F12>");
if (code == HID_KEY_PRINT_SCREEN) SerialTinyUSB.print("<PRNT>");
if (code == HID_KEY_SCROLL_LOCK) SerialTinyUSB.print("<SCRLL>");
if (code == HID_KEY_PAUSE) SerialTinyUSB.print("<PAUSE>");
if (code == HID_KEY_INSERT) SerialTinyUSB.print("<INSERT>");
if (code == HID_KEY_PAGE_UP) SerialTinyUSB.print("<PAGEUP>");
if (code == HID_KEY_DELETE) SerialTinyUSB.print("<DEL>");
if (code == HID_KEY_END) SerialTinyUSB.print("<END>");
if (code == HID_KEY_PAGE_DOWN) SerialTinyUSB.print("<PAGEDOWN>");
if (code == HID_KEY_NUM_LOCK) SerialTinyUSB.print("<ARROWRIGHT>");
if (code == HID_KEY_KEYPAD_DIVIDE) SerialTinyUSB.print("<KEYPAD_DIV>");
if (code == HID_KEY_KEYPAD_MULTIPLY) SerialTinyUSB.print("<KEYPAD_MUL>");
if (code == HID_KEY_KEYPAD_SUBTRACT) SerialTinyUSB.print("<KEYPAD_SUB>");
if (code == HID_KEY_KEYPAD_ADD) SerialTinyUSB.print("<KEYPAD_ADD>");
if (code == HID_KEY_KEYPAD_DECIMAL) SerialTinyUSB.print("<KEYPAD_DECIMAL>");
}
static void process_mouse_report(hid_mouse_report_t const* report) {
static hid_mouse_report_t prev_report = { 0 };
//------------- button state -------------//
uint8_t button_changed_mask = report->buttons ^ prev_report.buttons;
if (button_changed_mask & report->buttons) {
SerialTinyUSB.printf("MOUSE: %c%c%c ",
report->buttons & MOUSE_BUTTON_LEFT ? 'L' : '-',
report->buttons & MOUSE_BUTTON_MIDDLE ? 'M' : '-',
report->buttons & MOUSE_BUTTON_RIGHT ? 'R' : '-');
}
cursor_movement(report->x, report->y, report->wheel);
}
void cursor_movement(int8_t x, int8_t y, int8_t wheel) {
SerialTinyUSB.printf("(%d %d %d)\r\n", x, y, wheel);
}
// END of BADUSB detector section
//
// OTHER Host devices detection section
//
// Invoked when a device with MassStorage interface is mounted
void tuh_msc_mount_cb(uint8_t dev_addr) {
printout("\n[++] Mass Device");
SerialTinyUSB.printf("Mass Device attached, address = %d\r\n", dev_addr);
}
// Invoked when a device with MassStorage interface is unmounted
void tuh_msc_umount_cb(uint8_t dev_addr) {
SerialTinyUSB.printf("Mass Device unmounted, address = %d\r\n", dev_addr);
}
// Invoked when a device with CDC (Communication Device Class) interface is mounted
void tuh_cdc_mount_cb(uint8_t idx) {
printout("\n[++] CDC Device");
SerialTinyUSB.printf("CDC Device attached, idx = %d\r\n", idx);
}
// Invoked when a device with CDC (Communication Device Class) interface is unmounted
void tuh_cdc_umount_cb(uint8_t idx) {
SerialTinyUSB.printf("CDC Device unmounted, idx = %d\r\n", idx);
}
// END of OTHER Host devices detector section