mirror of
https://github.com/hedge-dev/XenonRecomp.git
synced 2025-12-11 22:44:59 +00:00
Initial Commit
This commit is contained in:
134
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/PBQP/CostAllocator.h
vendored
Normal file
134
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/PBQP/CostAllocator.h
vendored
Normal file
@@ -0,0 +1,134 @@
|
||||
//===- CostAllocator.h - PBQP Cost Allocator --------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Defines classes conforming to the PBQP cost value manager concept.
|
||||
//
|
||||
// Cost value managers are memory managers for PBQP cost values (vectors and
|
||||
// matrices). Since PBQP graphs can grow very large (E.g. hundreds of thousands
|
||||
// of edges on the largest function in SPEC2006).
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_PBQP_COSTALLOCATOR_H
|
||||
#define LLVM_CODEGEN_PBQP_COSTALLOCATOR_H
|
||||
|
||||
#include "llvm/ADT/DenseSet.h"
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
namespace llvm {
|
||||
namespace PBQP {
|
||||
|
||||
template <typename ValueT> class ValuePool {
|
||||
public:
|
||||
using PoolRef = std::shared_ptr<const ValueT>;
|
||||
|
||||
private:
|
||||
class PoolEntry : public std::enable_shared_from_this<PoolEntry> {
|
||||
public:
|
||||
template <typename ValueKeyT>
|
||||
PoolEntry(ValuePool &Pool, ValueKeyT Value)
|
||||
: Pool(Pool), Value(std::move(Value)) {}
|
||||
|
||||
~PoolEntry() { Pool.removeEntry(this); }
|
||||
|
||||
const ValueT &getValue() const { return Value; }
|
||||
|
||||
private:
|
||||
ValuePool &Pool;
|
||||
ValueT Value;
|
||||
};
|
||||
|
||||
class PoolEntryDSInfo {
|
||||
public:
|
||||
static inline PoolEntry *getEmptyKey() { return nullptr; }
|
||||
|
||||
static inline PoolEntry *getTombstoneKey() {
|
||||
return reinterpret_cast<PoolEntry *>(static_cast<uintptr_t>(1));
|
||||
}
|
||||
|
||||
template <typename ValueKeyT>
|
||||
static unsigned getHashValue(const ValueKeyT &C) {
|
||||
return hash_value(C);
|
||||
}
|
||||
|
||||
static unsigned getHashValue(PoolEntry *P) {
|
||||
return getHashValue(P->getValue());
|
||||
}
|
||||
|
||||
static unsigned getHashValue(const PoolEntry *P) {
|
||||
return getHashValue(P->getValue());
|
||||
}
|
||||
|
||||
template <typename ValueKeyT1, typename ValueKeyT2>
|
||||
static bool isEqual(const ValueKeyT1 &C1, const ValueKeyT2 &C2) {
|
||||
return C1 == C2;
|
||||
}
|
||||
|
||||
template <typename ValueKeyT>
|
||||
static bool isEqual(const ValueKeyT &C, PoolEntry *P) {
|
||||
if (P == getEmptyKey() || P == getTombstoneKey())
|
||||
return false;
|
||||
return isEqual(C, P->getValue());
|
||||
}
|
||||
|
||||
static bool isEqual(PoolEntry *P1, PoolEntry *P2) {
|
||||
if (P1 == getEmptyKey() || P1 == getTombstoneKey())
|
||||
return P1 == P2;
|
||||
return isEqual(P1->getValue(), P2);
|
||||
}
|
||||
};
|
||||
|
||||
using EntrySetT = DenseSet<PoolEntry *, PoolEntryDSInfo>;
|
||||
|
||||
EntrySetT EntrySet;
|
||||
|
||||
void removeEntry(PoolEntry *P) { EntrySet.erase(P); }
|
||||
|
||||
public:
|
||||
template <typename ValueKeyT> PoolRef getValue(ValueKeyT ValueKey) {
|
||||
typename EntrySetT::iterator I = EntrySet.find_as(ValueKey);
|
||||
|
||||
if (I != EntrySet.end())
|
||||
return PoolRef((*I)->shared_from_this(), &(*I)->getValue());
|
||||
|
||||
auto P = std::make_shared<PoolEntry>(*this, std::move(ValueKey));
|
||||
EntrySet.insert(P.get());
|
||||
return PoolRef(std::move(P), &P->getValue());
|
||||
}
|
||||
};
|
||||
|
||||
template <typename VectorT, typename MatrixT> class PoolCostAllocator {
|
||||
private:
|
||||
using VectorCostPool = ValuePool<VectorT>;
|
||||
using MatrixCostPool = ValuePool<MatrixT>;
|
||||
|
||||
public:
|
||||
using Vector = VectorT;
|
||||
using Matrix = MatrixT;
|
||||
using VectorPtr = typename VectorCostPool::PoolRef;
|
||||
using MatrixPtr = typename MatrixCostPool::PoolRef;
|
||||
|
||||
template <typename VectorKeyT> VectorPtr getVector(VectorKeyT v) {
|
||||
return VectorPool.getValue(std::move(v));
|
||||
}
|
||||
|
||||
template <typename MatrixKeyT> MatrixPtr getMatrix(MatrixKeyT m) {
|
||||
return MatrixPool.getValue(std::move(m));
|
||||
}
|
||||
|
||||
private:
|
||||
VectorCostPool VectorPool;
|
||||
MatrixCostPool MatrixPool;
|
||||
};
|
||||
|
||||
} // end namespace PBQP
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_COSTALLOCATOR_H
|
||||
674
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/PBQP/Graph.h
vendored
Normal file
674
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/PBQP/Graph.h
vendored
Normal file
@@ -0,0 +1,674 @@
|
||||
//===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// PBQP Graph class.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
|
||||
#define LLVM_CODEGEN_PBQP_GRAPH_H
|
||||
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
namespace PBQP {
|
||||
|
||||
class GraphBase {
|
||||
public:
|
||||
using NodeId = unsigned;
|
||||
using EdgeId = unsigned;
|
||||
|
||||
/// Returns a value representing an invalid (non-existent) node.
|
||||
static NodeId invalidNodeId() {
|
||||
return std::numeric_limits<NodeId>::max();
|
||||
}
|
||||
|
||||
/// Returns a value representing an invalid (non-existent) edge.
|
||||
static EdgeId invalidEdgeId() {
|
||||
return std::numeric_limits<EdgeId>::max();
|
||||
}
|
||||
};
|
||||
|
||||
/// PBQP Graph class.
|
||||
/// Instances of this class describe PBQP problems.
|
||||
///
|
||||
template <typename SolverT>
|
||||
class Graph : public GraphBase {
|
||||
private:
|
||||
using CostAllocator = typename SolverT::CostAllocator;
|
||||
|
||||
public:
|
||||
using RawVector = typename SolverT::RawVector;
|
||||
using RawMatrix = typename SolverT::RawMatrix;
|
||||
using Vector = typename SolverT::Vector;
|
||||
using Matrix = typename SolverT::Matrix;
|
||||
using VectorPtr = typename CostAllocator::VectorPtr;
|
||||
using MatrixPtr = typename CostAllocator::MatrixPtr;
|
||||
using NodeMetadata = typename SolverT::NodeMetadata;
|
||||
using EdgeMetadata = typename SolverT::EdgeMetadata;
|
||||
using GraphMetadata = typename SolverT::GraphMetadata;
|
||||
|
||||
private:
|
||||
class NodeEntry {
|
||||
public:
|
||||
using AdjEdgeList = std::vector<EdgeId>;
|
||||
using AdjEdgeIdx = AdjEdgeList::size_type;
|
||||
using AdjEdgeItr = AdjEdgeList::const_iterator;
|
||||
|
||||
NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {}
|
||||
|
||||
static AdjEdgeIdx getInvalidAdjEdgeIdx() {
|
||||
return std::numeric_limits<AdjEdgeIdx>::max();
|
||||
}
|
||||
|
||||
AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
|
||||
AdjEdgeIdx Idx = AdjEdgeIds.size();
|
||||
AdjEdgeIds.push_back(EId);
|
||||
return Idx;
|
||||
}
|
||||
|
||||
void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
|
||||
// Swap-and-pop for fast removal.
|
||||
// 1) Update the adj index of the edge currently at back().
|
||||
// 2) Move last Edge down to Idx.
|
||||
// 3) pop_back()
|
||||
// If Idx == size() - 1 then the setAdjEdgeIdx and swap are
|
||||
// redundant, but both operations are cheap.
|
||||
G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
|
||||
AdjEdgeIds[Idx] = AdjEdgeIds.back();
|
||||
AdjEdgeIds.pop_back();
|
||||
}
|
||||
|
||||
const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
|
||||
|
||||
VectorPtr Costs;
|
||||
NodeMetadata Metadata;
|
||||
|
||||
private:
|
||||
AdjEdgeList AdjEdgeIds;
|
||||
};
|
||||
|
||||
class EdgeEntry {
|
||||
public:
|
||||
EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
|
||||
: Costs(std::move(Costs)) {
|
||||
NIds[0] = N1Id;
|
||||
NIds[1] = N2Id;
|
||||
ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
|
||||
ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
|
||||
}
|
||||
|
||||
void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
|
||||
assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
|
||||
"Edge already connected to NIds[NIdx].");
|
||||
NodeEntry &N = G.getNode(NIds[NIdx]);
|
||||
ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
|
||||
}
|
||||
|
||||
void connect(Graph &G, EdgeId ThisEdgeId) {
|
||||
connectToN(G, ThisEdgeId, 0);
|
||||
connectToN(G, ThisEdgeId, 1);
|
||||
}
|
||||
|
||||
void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
|
||||
if (NId == NIds[0])
|
||||
ThisEdgeAdjIdxs[0] = NewIdx;
|
||||
else {
|
||||
assert(NId == NIds[1] && "Edge not connected to NId");
|
||||
ThisEdgeAdjIdxs[1] = NewIdx;
|
||||
}
|
||||
}
|
||||
|
||||
void disconnectFromN(Graph &G, unsigned NIdx) {
|
||||
assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
|
||||
"Edge not connected to NIds[NIdx].");
|
||||
NodeEntry &N = G.getNode(NIds[NIdx]);
|
||||
N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
|
||||
ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
|
||||
}
|
||||
|
||||
void disconnectFrom(Graph &G, NodeId NId) {
|
||||
if (NId == NIds[0])
|
||||
disconnectFromN(G, 0);
|
||||
else {
|
||||
assert(NId == NIds[1] && "Edge does not connect NId");
|
||||
disconnectFromN(G, 1);
|
||||
}
|
||||
}
|
||||
|
||||
NodeId getN1Id() const { return NIds[0]; }
|
||||
NodeId getN2Id() const { return NIds[1]; }
|
||||
|
||||
MatrixPtr Costs;
|
||||
EdgeMetadata Metadata;
|
||||
|
||||
private:
|
||||
NodeId NIds[2];
|
||||
typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
|
||||
};
|
||||
|
||||
// ----- MEMBERS -----
|
||||
|
||||
GraphMetadata Metadata;
|
||||
CostAllocator CostAlloc;
|
||||
SolverT *Solver = nullptr;
|
||||
|
||||
using NodeVector = std::vector<NodeEntry>;
|
||||
using FreeNodeVector = std::vector<NodeId>;
|
||||
NodeVector Nodes;
|
||||
FreeNodeVector FreeNodeIds;
|
||||
|
||||
using EdgeVector = std::vector<EdgeEntry>;
|
||||
using FreeEdgeVector = std::vector<EdgeId>;
|
||||
EdgeVector Edges;
|
||||
FreeEdgeVector FreeEdgeIds;
|
||||
|
||||
Graph(const Graph &Other) {}
|
||||
|
||||
// ----- INTERNAL METHODS -----
|
||||
|
||||
NodeEntry &getNode(NodeId NId) {
|
||||
assert(NId < Nodes.size() && "Out of bound NodeId");
|
||||
return Nodes[NId];
|
||||
}
|
||||
const NodeEntry &getNode(NodeId NId) const {
|
||||
assert(NId < Nodes.size() && "Out of bound NodeId");
|
||||
return Nodes[NId];
|
||||
}
|
||||
|
||||
EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
|
||||
const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
|
||||
|
||||
NodeId addConstructedNode(NodeEntry N) {
|
||||
NodeId NId = 0;
|
||||
if (!FreeNodeIds.empty()) {
|
||||
NId = FreeNodeIds.back();
|
||||
FreeNodeIds.pop_back();
|
||||
Nodes[NId] = std::move(N);
|
||||
} else {
|
||||
NId = Nodes.size();
|
||||
Nodes.push_back(std::move(N));
|
||||
}
|
||||
return NId;
|
||||
}
|
||||
|
||||
EdgeId addConstructedEdge(EdgeEntry E) {
|
||||
assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
|
||||
"Attempt to add duplicate edge.");
|
||||
EdgeId EId = 0;
|
||||
if (!FreeEdgeIds.empty()) {
|
||||
EId = FreeEdgeIds.back();
|
||||
FreeEdgeIds.pop_back();
|
||||
Edges[EId] = std::move(E);
|
||||
} else {
|
||||
EId = Edges.size();
|
||||
Edges.push_back(std::move(E));
|
||||
}
|
||||
|
||||
EdgeEntry &NE = getEdge(EId);
|
||||
|
||||
// Add the edge to the adjacency sets of its nodes.
|
||||
NE.connect(*this, EId);
|
||||
return EId;
|
||||
}
|
||||
|
||||
void operator=(const Graph &Other) {}
|
||||
|
||||
public:
|
||||
using AdjEdgeItr = typename NodeEntry::AdjEdgeItr;
|
||||
|
||||
class NodeItr {
|
||||
public:
|
||||
using iterator_category = std::forward_iterator_tag;
|
||||
using value_type = NodeId;
|
||||
using difference_type = int;
|
||||
using pointer = NodeId *;
|
||||
using reference = NodeId &;
|
||||
|
||||
NodeItr(NodeId CurNId, const Graph &G)
|
||||
: CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
|
||||
this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
|
||||
}
|
||||
|
||||
bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
|
||||
bool operator!=(const NodeItr &O) const { return !(*this == O); }
|
||||
NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
|
||||
NodeId operator*() const { return CurNId; }
|
||||
|
||||
private:
|
||||
NodeId findNextInUse(NodeId NId) const {
|
||||
while (NId < EndNId && is_contained(FreeNodeIds, NId)) {
|
||||
++NId;
|
||||
}
|
||||
return NId;
|
||||
}
|
||||
|
||||
NodeId CurNId, EndNId;
|
||||
const FreeNodeVector &FreeNodeIds;
|
||||
};
|
||||
|
||||
class EdgeItr {
|
||||
public:
|
||||
EdgeItr(EdgeId CurEId, const Graph &G)
|
||||
: CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
|
||||
this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
|
||||
}
|
||||
|
||||
bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
|
||||
bool operator!=(const EdgeItr &O) const { return !(*this == O); }
|
||||
EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
|
||||
EdgeId operator*() const { return CurEId; }
|
||||
|
||||
private:
|
||||
EdgeId findNextInUse(EdgeId EId) const {
|
||||
while (EId < EndEId && is_contained(FreeEdgeIds, EId)) {
|
||||
++EId;
|
||||
}
|
||||
return EId;
|
||||
}
|
||||
|
||||
EdgeId CurEId, EndEId;
|
||||
const FreeEdgeVector &FreeEdgeIds;
|
||||
};
|
||||
|
||||
class NodeIdSet {
|
||||
public:
|
||||
NodeIdSet(const Graph &G) : G(G) {}
|
||||
|
||||
NodeItr begin() const { return NodeItr(0, G); }
|
||||
NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
|
||||
|
||||
bool empty() const { return G.Nodes.empty(); }
|
||||
|
||||
typename NodeVector::size_type size() const {
|
||||
return G.Nodes.size() - G.FreeNodeIds.size();
|
||||
}
|
||||
|
||||
private:
|
||||
const Graph& G;
|
||||
};
|
||||
|
||||
class EdgeIdSet {
|
||||
public:
|
||||
EdgeIdSet(const Graph &G) : G(G) {}
|
||||
|
||||
EdgeItr begin() const { return EdgeItr(0, G); }
|
||||
EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
|
||||
|
||||
bool empty() const { return G.Edges.empty(); }
|
||||
|
||||
typename NodeVector::size_type size() const {
|
||||
return G.Edges.size() - G.FreeEdgeIds.size();
|
||||
}
|
||||
|
||||
private:
|
||||
const Graph& G;
|
||||
};
|
||||
|
||||
class AdjEdgeIdSet {
|
||||
public:
|
||||
AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {}
|
||||
|
||||
typename NodeEntry::AdjEdgeItr begin() const {
|
||||
return NE.getAdjEdgeIds().begin();
|
||||
}
|
||||
|
||||
typename NodeEntry::AdjEdgeItr end() const {
|
||||
return NE.getAdjEdgeIds().end();
|
||||
}
|
||||
|
||||
bool empty() const { return NE.getAdjEdgeIds().empty(); }
|
||||
|
||||
typename NodeEntry::AdjEdgeList::size_type size() const {
|
||||
return NE.getAdjEdgeIds().size();
|
||||
}
|
||||
|
||||
private:
|
||||
const NodeEntry &NE;
|
||||
};
|
||||
|
||||
/// Construct an empty PBQP graph.
|
||||
Graph() = default;
|
||||
|
||||
/// Construct an empty PBQP graph with the given graph metadata.
|
||||
Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {}
|
||||
|
||||
/// Get a reference to the graph metadata.
|
||||
GraphMetadata& getMetadata() { return Metadata; }
|
||||
|
||||
/// Get a const-reference to the graph metadata.
|
||||
const GraphMetadata& getMetadata() const { return Metadata; }
|
||||
|
||||
/// Lock this graph to the given solver instance in preparation
|
||||
/// for running the solver. This method will call solver.handleAddNode for
|
||||
/// each node in the graph, and handleAddEdge for each edge, to give the
|
||||
/// solver an opportunity to set up any required metadata.
|
||||
void setSolver(SolverT &S) {
|
||||
assert(!Solver && "Solver already set. Call unsetSolver().");
|
||||
Solver = &S;
|
||||
for (auto NId : nodeIds())
|
||||
Solver->handleAddNode(NId);
|
||||
for (auto EId : edgeIds())
|
||||
Solver->handleAddEdge(EId);
|
||||
}
|
||||
|
||||
/// Release from solver instance.
|
||||
void unsetSolver() {
|
||||
assert(Solver && "Solver not set.");
|
||||
Solver = nullptr;
|
||||
}
|
||||
|
||||
/// Add a node with the given costs.
|
||||
/// @param Costs Cost vector for the new node.
|
||||
/// @return Node iterator for the added node.
|
||||
template <typename OtherVectorT>
|
||||
NodeId addNode(OtherVectorT Costs) {
|
||||
// Get cost vector from the problem domain
|
||||
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
|
||||
NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
|
||||
if (Solver)
|
||||
Solver->handleAddNode(NId);
|
||||
return NId;
|
||||
}
|
||||
|
||||
/// Add a node bypassing the cost allocator.
|
||||
/// @param Costs Cost vector ptr for the new node (must be convertible to
|
||||
/// VectorPtr).
|
||||
/// @return Node iterator for the added node.
|
||||
///
|
||||
/// This method allows for fast addition of a node whose costs don't need
|
||||
/// to be passed through the cost allocator. The most common use case for
|
||||
/// this is when duplicating costs from an existing node (when using a
|
||||
/// pooling allocator). These have already been uniqued, so we can avoid
|
||||
/// re-constructing and re-uniquing them by attaching them directly to the
|
||||
/// new node.
|
||||
template <typename OtherVectorPtrT>
|
||||
NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) {
|
||||
NodeId NId = addConstructedNode(NodeEntry(Costs));
|
||||
if (Solver)
|
||||
Solver->handleAddNode(NId);
|
||||
return NId;
|
||||
}
|
||||
|
||||
/// Add an edge between the given nodes with the given costs.
|
||||
/// @param N1Id First node.
|
||||
/// @param N2Id Second node.
|
||||
/// @param Costs Cost matrix for new edge.
|
||||
/// @return Edge iterator for the added edge.
|
||||
template <typename OtherVectorT>
|
||||
EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
|
||||
assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
|
||||
getNodeCosts(N2Id).getLength() == Costs.getCols() &&
|
||||
"Matrix dimensions mismatch.");
|
||||
// Get cost matrix from the problem domain.
|
||||
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
|
||||
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
|
||||
if (Solver)
|
||||
Solver->handleAddEdge(EId);
|
||||
return EId;
|
||||
}
|
||||
|
||||
/// Add an edge bypassing the cost allocator.
|
||||
/// @param N1Id First node.
|
||||
/// @param N2Id Second node.
|
||||
/// @param Costs Cost matrix for new edge.
|
||||
/// @return Edge iterator for the added edge.
|
||||
///
|
||||
/// This method allows for fast addition of an edge whose costs don't need
|
||||
/// to be passed through the cost allocator. The most common use case for
|
||||
/// this is when duplicating costs from an existing edge (when using a
|
||||
/// pooling allocator). These have already been uniqued, so we can avoid
|
||||
/// re-constructing and re-uniquing them by attaching them directly to the
|
||||
/// new edge.
|
||||
template <typename OtherMatrixPtrT>
|
||||
NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id,
|
||||
OtherMatrixPtrT Costs) {
|
||||
assert(getNodeCosts(N1Id).getLength() == Costs->getRows() &&
|
||||
getNodeCosts(N2Id).getLength() == Costs->getCols() &&
|
||||
"Matrix dimensions mismatch.");
|
||||
// Get cost matrix from the problem domain.
|
||||
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs));
|
||||
if (Solver)
|
||||
Solver->handleAddEdge(EId);
|
||||
return EId;
|
||||
}
|
||||
|
||||
/// Returns true if the graph is empty.
|
||||
bool empty() const { return NodeIdSet(*this).empty(); }
|
||||
|
||||
NodeIdSet nodeIds() const { return NodeIdSet(*this); }
|
||||
EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
|
||||
|
||||
AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
|
||||
|
||||
/// Get the number of nodes in the graph.
|
||||
/// @return Number of nodes in the graph.
|
||||
unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
|
||||
|
||||
/// Get the number of edges in the graph.
|
||||
/// @return Number of edges in the graph.
|
||||
unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
|
||||
|
||||
/// Set a node's cost vector.
|
||||
/// @param NId Node to update.
|
||||
/// @param Costs New costs to set.
|
||||
template <typename OtherVectorT>
|
||||
void setNodeCosts(NodeId NId, OtherVectorT Costs) {
|
||||
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
|
||||
if (Solver)
|
||||
Solver->handleSetNodeCosts(NId, *AllocatedCosts);
|
||||
getNode(NId).Costs = AllocatedCosts;
|
||||
}
|
||||
|
||||
/// Get a VectorPtr to a node's cost vector. Rarely useful - use
|
||||
/// getNodeCosts where possible.
|
||||
/// @param NId Node id.
|
||||
/// @return VectorPtr to node cost vector.
|
||||
///
|
||||
/// This method is primarily useful for duplicating costs quickly by
|
||||
/// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
|
||||
/// getNodeCosts when dealing with node cost values.
|
||||
const VectorPtr& getNodeCostsPtr(NodeId NId) const {
|
||||
return getNode(NId).Costs;
|
||||
}
|
||||
|
||||
/// Get a node's cost vector.
|
||||
/// @param NId Node id.
|
||||
/// @return Node cost vector.
|
||||
const Vector& getNodeCosts(NodeId NId) const {
|
||||
return *getNodeCostsPtr(NId);
|
||||
}
|
||||
|
||||
NodeMetadata& getNodeMetadata(NodeId NId) {
|
||||
return getNode(NId).Metadata;
|
||||
}
|
||||
|
||||
const NodeMetadata& getNodeMetadata(NodeId NId) const {
|
||||
return getNode(NId).Metadata;
|
||||
}
|
||||
|
||||
typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
|
||||
return getNode(NId).getAdjEdgeIds().size();
|
||||
}
|
||||
|
||||
/// Update an edge's cost matrix.
|
||||
/// @param EId Edge id.
|
||||
/// @param Costs New cost matrix.
|
||||
template <typename OtherMatrixT>
|
||||
void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
|
||||
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
|
||||
if (Solver)
|
||||
Solver->handleUpdateCosts(EId, *AllocatedCosts);
|
||||
getEdge(EId).Costs = AllocatedCosts;
|
||||
}
|
||||
|
||||
/// Get a MatrixPtr to a node's cost matrix. Rarely useful - use
|
||||
/// getEdgeCosts where possible.
|
||||
/// @param EId Edge id.
|
||||
/// @return MatrixPtr to edge cost matrix.
|
||||
///
|
||||
/// This method is primarily useful for duplicating costs quickly by
|
||||
/// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
|
||||
/// getEdgeCosts when dealing with edge cost values.
|
||||
const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const {
|
||||
return getEdge(EId).Costs;
|
||||
}
|
||||
|
||||
/// Get an edge's cost matrix.
|
||||
/// @param EId Edge id.
|
||||
/// @return Edge cost matrix.
|
||||
const Matrix& getEdgeCosts(EdgeId EId) const {
|
||||
return *getEdge(EId).Costs;
|
||||
}
|
||||
|
||||
EdgeMetadata& getEdgeMetadata(EdgeId EId) {
|
||||
return getEdge(EId).Metadata;
|
||||
}
|
||||
|
||||
const EdgeMetadata& getEdgeMetadata(EdgeId EId) const {
|
||||
return getEdge(EId).Metadata;
|
||||
}
|
||||
|
||||
/// Get the first node connected to this edge.
|
||||
/// @param EId Edge id.
|
||||
/// @return The first node connected to the given edge.
|
||||
NodeId getEdgeNode1Id(EdgeId EId) const {
|
||||
return getEdge(EId).getN1Id();
|
||||
}
|
||||
|
||||
/// Get the second node connected to this edge.
|
||||
/// @param EId Edge id.
|
||||
/// @return The second node connected to the given edge.
|
||||
NodeId getEdgeNode2Id(EdgeId EId) const {
|
||||
return getEdge(EId).getN2Id();
|
||||
}
|
||||
|
||||
/// Get the "other" node connected to this edge.
|
||||
/// @param EId Edge id.
|
||||
/// @param NId Node id for the "given" node.
|
||||
/// @return The iterator for the "other" node connected to this edge.
|
||||
NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
|
||||
EdgeEntry &E = getEdge(EId);
|
||||
if (E.getN1Id() == NId) {
|
||||
return E.getN2Id();
|
||||
} // else
|
||||
return E.getN1Id();
|
||||
}
|
||||
|
||||
/// Get the edge connecting two nodes.
|
||||
/// @param N1Id First node id.
|
||||
/// @param N2Id Second node id.
|
||||
/// @return An id for edge (N1Id, N2Id) if such an edge exists,
|
||||
/// otherwise returns an invalid edge id.
|
||||
EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
|
||||
for (auto AEId : adjEdgeIds(N1Id)) {
|
||||
if ((getEdgeNode1Id(AEId) == N2Id) ||
|
||||
(getEdgeNode2Id(AEId) == N2Id)) {
|
||||
return AEId;
|
||||
}
|
||||
}
|
||||
return invalidEdgeId();
|
||||
}
|
||||
|
||||
/// Remove a node from the graph.
|
||||
/// @param NId Node id.
|
||||
void removeNode(NodeId NId) {
|
||||
if (Solver)
|
||||
Solver->handleRemoveNode(NId);
|
||||
NodeEntry &N = getNode(NId);
|
||||
// TODO: Can this be for-each'd?
|
||||
for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
|
||||
AEEnd = N.adjEdgesEnd();
|
||||
AEItr != AEEnd;) {
|
||||
EdgeId EId = *AEItr;
|
||||
++AEItr;
|
||||
removeEdge(EId);
|
||||
}
|
||||
FreeNodeIds.push_back(NId);
|
||||
}
|
||||
|
||||
/// Disconnect an edge from the given node.
|
||||
///
|
||||
/// Removes the given edge from the adjacency list of the given node.
|
||||
/// This operation leaves the edge in an 'asymmetric' state: It will no
|
||||
/// longer appear in an iteration over the given node's (NId's) edges, but
|
||||
/// will appear in an iteration over the 'other', unnamed node's edges.
|
||||
///
|
||||
/// This does not correspond to any normal graph operation, but exists to
|
||||
/// support efficient PBQP graph-reduction based solvers. It is used to
|
||||
/// 'effectively' remove the unnamed node from the graph while the solver
|
||||
/// is performing the reduction. The solver will later call reconnectNode
|
||||
/// to restore the edge in the named node's adjacency list.
|
||||
///
|
||||
/// Since the degree of a node is the number of connected edges,
|
||||
/// disconnecting an edge from a node 'u' will cause the degree of 'u' to
|
||||
/// drop by 1.
|
||||
///
|
||||
/// A disconnected edge WILL still appear in an iteration over the graph
|
||||
/// edges.
|
||||
///
|
||||
/// A disconnected edge should not be removed from the graph, it should be
|
||||
/// reconnected first.
|
||||
///
|
||||
/// A disconnected edge can be reconnected by calling the reconnectEdge
|
||||
/// method.
|
||||
void disconnectEdge(EdgeId EId, NodeId NId) {
|
||||
if (Solver)
|
||||
Solver->handleDisconnectEdge(EId, NId);
|
||||
|
||||
EdgeEntry &E = getEdge(EId);
|
||||
E.disconnectFrom(*this, NId);
|
||||
}
|
||||
|
||||
/// Convenience method to disconnect all neighbours from the given
|
||||
/// node.
|
||||
void disconnectAllNeighborsFromNode(NodeId NId) {
|
||||
for (auto AEId : adjEdgeIds(NId))
|
||||
disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
|
||||
}
|
||||
|
||||
/// Re-attach an edge to its nodes.
|
||||
///
|
||||
/// Adds an edge that had been previously disconnected back into the
|
||||
/// adjacency set of the nodes that the edge connects.
|
||||
void reconnectEdge(EdgeId EId, NodeId NId) {
|
||||
EdgeEntry &E = getEdge(EId);
|
||||
E.connectTo(*this, EId, NId);
|
||||
if (Solver)
|
||||
Solver->handleReconnectEdge(EId, NId);
|
||||
}
|
||||
|
||||
/// Remove an edge from the graph.
|
||||
/// @param EId Edge id.
|
||||
void removeEdge(EdgeId EId) {
|
||||
if (Solver)
|
||||
Solver->handleRemoveEdge(EId);
|
||||
EdgeEntry &E = getEdge(EId);
|
||||
E.disconnect();
|
||||
FreeEdgeIds.push_back(EId);
|
||||
Edges[EId].invalidate();
|
||||
}
|
||||
|
||||
/// Remove all nodes and edges from the graph.
|
||||
void clear() {
|
||||
Nodes.clear();
|
||||
FreeNodeIds.clear();
|
||||
Edges.clear();
|
||||
FreeEdgeIds.clear();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace PBQP
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_GRAPH_H
|
||||
291
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/PBQP/Math.h
vendored
Normal file
291
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/PBQP/Math.h
vendored
Normal file
@@ -0,0 +1,291 @@
|
||||
//===- Math.h - PBQP Vector and Matrix classes ------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_PBQP_MATH_H
|
||||
#define LLVM_CODEGEN_PBQP_MATH_H
|
||||
|
||||
#include "llvm/ADT/Hashing.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
|
||||
namespace llvm {
|
||||
namespace PBQP {
|
||||
|
||||
using PBQPNum = float;
|
||||
|
||||
/// PBQP Vector class.
|
||||
class Vector {
|
||||
friend hash_code hash_value(const Vector &);
|
||||
|
||||
public:
|
||||
/// Construct a PBQP vector of the given size.
|
||||
explicit Vector(unsigned Length)
|
||||
: Length(Length), Data(std::make_unique<PBQPNum []>(Length)) {}
|
||||
|
||||
/// Construct a PBQP vector with initializer.
|
||||
Vector(unsigned Length, PBQPNum InitVal)
|
||||
: Length(Length), Data(std::make_unique<PBQPNum []>(Length)) {
|
||||
std::fill(Data.get(), Data.get() + Length, InitVal);
|
||||
}
|
||||
|
||||
/// Copy construct a PBQP vector.
|
||||
Vector(const Vector &V)
|
||||
: Length(V.Length), Data(std::make_unique<PBQPNum []>(Length)) {
|
||||
std::copy(V.Data.get(), V.Data.get() + Length, Data.get());
|
||||
}
|
||||
|
||||
/// Move construct a PBQP vector.
|
||||
Vector(Vector &&V)
|
||||
: Length(V.Length), Data(std::move(V.Data)) {
|
||||
V.Length = 0;
|
||||
}
|
||||
|
||||
/// Comparison operator.
|
||||
bool operator==(const Vector &V) const {
|
||||
assert(Length != 0 && Data && "Invalid vector");
|
||||
if (Length != V.Length)
|
||||
return false;
|
||||
return std::equal(Data.get(), Data.get() + Length, V.Data.get());
|
||||
}
|
||||
|
||||
/// Return the length of the vector
|
||||
unsigned getLength() const {
|
||||
assert(Length != 0 && Data && "Invalid vector");
|
||||
return Length;
|
||||
}
|
||||
|
||||
/// Element access.
|
||||
PBQPNum& operator[](unsigned Index) {
|
||||
assert(Length != 0 && Data && "Invalid vector");
|
||||
assert(Index < Length && "Vector element access out of bounds.");
|
||||
return Data[Index];
|
||||
}
|
||||
|
||||
/// Const element access.
|
||||
const PBQPNum& operator[](unsigned Index) const {
|
||||
assert(Length != 0 && Data && "Invalid vector");
|
||||
assert(Index < Length && "Vector element access out of bounds.");
|
||||
return Data[Index];
|
||||
}
|
||||
|
||||
/// Add another vector to this one.
|
||||
Vector& operator+=(const Vector &V) {
|
||||
assert(Length != 0 && Data && "Invalid vector");
|
||||
assert(Length == V.Length && "Vector length mismatch.");
|
||||
std::transform(Data.get(), Data.get() + Length, V.Data.get(), Data.get(),
|
||||
std::plus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// Returns the index of the minimum value in this vector
|
||||
unsigned minIndex() const {
|
||||
assert(Length != 0 && Data && "Invalid vector");
|
||||
return std::min_element(Data.get(), Data.get() + Length) - Data.get();
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned Length;
|
||||
std::unique_ptr<PBQPNum []> Data;
|
||||
};
|
||||
|
||||
/// Return a hash_value for the given vector.
|
||||
inline hash_code hash_value(const Vector &V) {
|
||||
unsigned *VBegin = reinterpret_cast<unsigned*>(V.Data.get());
|
||||
unsigned *VEnd = reinterpret_cast<unsigned*>(V.Data.get() + V.Length);
|
||||
return hash_combine(V.Length, hash_combine_range(VBegin, VEnd));
|
||||
}
|
||||
|
||||
/// Output a textual representation of the given vector on the given
|
||||
/// output stream.
|
||||
template <typename OStream>
|
||||
OStream& operator<<(OStream &OS, const Vector &V) {
|
||||
assert((V.getLength() != 0) && "Zero-length vector badness.");
|
||||
|
||||
OS << "[ " << V[0];
|
||||
for (unsigned i = 1; i < V.getLength(); ++i)
|
||||
OS << ", " << V[i];
|
||||
OS << " ]";
|
||||
|
||||
return OS;
|
||||
}
|
||||
|
||||
/// PBQP Matrix class
|
||||
class Matrix {
|
||||
private:
|
||||
friend hash_code hash_value(const Matrix &);
|
||||
|
||||
public:
|
||||
/// Construct a PBQP Matrix with the given dimensions.
|
||||
Matrix(unsigned Rows, unsigned Cols) :
|
||||
Rows(Rows), Cols(Cols), Data(std::make_unique<PBQPNum []>(Rows * Cols)) {
|
||||
}
|
||||
|
||||
/// Construct a PBQP Matrix with the given dimensions and initial
|
||||
/// value.
|
||||
Matrix(unsigned Rows, unsigned Cols, PBQPNum InitVal)
|
||||
: Rows(Rows), Cols(Cols),
|
||||
Data(std::make_unique<PBQPNum []>(Rows * Cols)) {
|
||||
std::fill(Data.get(), Data.get() + (Rows * Cols), InitVal);
|
||||
}
|
||||
|
||||
/// Copy construct a PBQP matrix.
|
||||
Matrix(const Matrix &M)
|
||||
: Rows(M.Rows), Cols(M.Cols),
|
||||
Data(std::make_unique<PBQPNum []>(Rows * Cols)) {
|
||||
std::copy(M.Data.get(), M.Data.get() + (Rows * Cols), Data.get());
|
||||
}
|
||||
|
||||
/// Move construct a PBQP matrix.
|
||||
Matrix(Matrix &&M)
|
||||
: Rows(M.Rows), Cols(M.Cols), Data(std::move(M.Data)) {
|
||||
M.Rows = M.Cols = 0;
|
||||
}
|
||||
|
||||
/// Comparison operator.
|
||||
bool operator==(const Matrix &M) const {
|
||||
assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
|
||||
if (Rows != M.Rows || Cols != M.Cols)
|
||||
return false;
|
||||
return std::equal(Data.get(), Data.get() + (Rows * Cols), M.Data.get());
|
||||
}
|
||||
|
||||
/// Return the number of rows in this matrix.
|
||||
unsigned getRows() const {
|
||||
assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
|
||||
return Rows;
|
||||
}
|
||||
|
||||
/// Return the number of cols in this matrix.
|
||||
unsigned getCols() const {
|
||||
assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
|
||||
return Cols;
|
||||
}
|
||||
|
||||
/// Matrix element access.
|
||||
PBQPNum* operator[](unsigned R) {
|
||||
assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
|
||||
assert(R < Rows && "Row out of bounds.");
|
||||
return Data.get() + (R * Cols);
|
||||
}
|
||||
|
||||
/// Matrix element access.
|
||||
const PBQPNum* operator[](unsigned R) const {
|
||||
assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
|
||||
assert(R < Rows && "Row out of bounds.");
|
||||
return Data.get() + (R * Cols);
|
||||
}
|
||||
|
||||
/// Returns the given row as a vector.
|
||||
Vector getRowAsVector(unsigned R) const {
|
||||
assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
|
||||
Vector V(Cols);
|
||||
for (unsigned C = 0; C < Cols; ++C)
|
||||
V[C] = (*this)[R][C];
|
||||
return V;
|
||||
}
|
||||
|
||||
/// Returns the given column as a vector.
|
||||
Vector getColAsVector(unsigned C) const {
|
||||
assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
|
||||
Vector V(Rows);
|
||||
for (unsigned R = 0; R < Rows; ++R)
|
||||
V[R] = (*this)[R][C];
|
||||
return V;
|
||||
}
|
||||
|
||||
/// Matrix transpose.
|
||||
Matrix transpose() const {
|
||||
assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
|
||||
Matrix M(Cols, Rows);
|
||||
for (unsigned r = 0; r < Rows; ++r)
|
||||
for (unsigned c = 0; c < Cols; ++c)
|
||||
M[c][r] = (*this)[r][c];
|
||||
return M;
|
||||
}
|
||||
|
||||
/// Add the given matrix to this one.
|
||||
Matrix& operator+=(const Matrix &M) {
|
||||
assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
|
||||
assert(Rows == M.Rows && Cols == M.Cols &&
|
||||
"Matrix dimensions mismatch.");
|
||||
std::transform(Data.get(), Data.get() + (Rows * Cols), M.Data.get(),
|
||||
Data.get(), std::plus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
Matrix operator+(const Matrix &M) {
|
||||
assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix");
|
||||
Matrix Tmp(*this);
|
||||
Tmp += M;
|
||||
return Tmp;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned Rows, Cols;
|
||||
std::unique_ptr<PBQPNum []> Data;
|
||||
};
|
||||
|
||||
/// Return a hash_code for the given matrix.
|
||||
inline hash_code hash_value(const Matrix &M) {
|
||||
unsigned *MBegin = reinterpret_cast<unsigned*>(M.Data.get());
|
||||
unsigned *MEnd =
|
||||
reinterpret_cast<unsigned*>(M.Data.get() + (M.Rows * M.Cols));
|
||||
return hash_combine(M.Rows, M.Cols, hash_combine_range(MBegin, MEnd));
|
||||
}
|
||||
|
||||
/// Output a textual representation of the given matrix on the given
|
||||
/// output stream.
|
||||
template <typename OStream>
|
||||
OStream& operator<<(OStream &OS, const Matrix &M) {
|
||||
assert((M.getRows() != 0) && "Zero-row matrix badness.");
|
||||
for (unsigned i = 0; i < M.getRows(); ++i)
|
||||
OS << M.getRowAsVector(i) << "\n";
|
||||
return OS;
|
||||
}
|
||||
|
||||
template <typename Metadata>
|
||||
class MDVector : public Vector {
|
||||
public:
|
||||
MDVector(const Vector &v) : Vector(v), md(*this) {}
|
||||
MDVector(Vector &&v) : Vector(std::move(v)), md(*this) { }
|
||||
|
||||
const Metadata& getMetadata() const { return md; }
|
||||
|
||||
private:
|
||||
Metadata md;
|
||||
};
|
||||
|
||||
template <typename Metadata>
|
||||
inline hash_code hash_value(const MDVector<Metadata> &V) {
|
||||
return hash_value(static_cast<const Vector&>(V));
|
||||
}
|
||||
|
||||
template <typename Metadata>
|
||||
class MDMatrix : public Matrix {
|
||||
public:
|
||||
MDMatrix(const Matrix &m) : Matrix(m), md(*this) {}
|
||||
MDMatrix(Matrix &&m) : Matrix(std::move(m)), md(*this) { }
|
||||
|
||||
const Metadata& getMetadata() const { return md; }
|
||||
|
||||
private:
|
||||
Metadata md;
|
||||
};
|
||||
|
||||
template <typename Metadata>
|
||||
inline hash_code hash_value(const MDMatrix<Metadata> &M) {
|
||||
return hash_value(static_cast<const Matrix&>(M));
|
||||
}
|
||||
|
||||
} // end namespace PBQP
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_MATH_H
|
||||
222
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/PBQP/ReductionRules.h
vendored
Normal file
222
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/PBQP/ReductionRules.h
vendored
Normal file
@@ -0,0 +1,222 @@
|
||||
//===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Reduction Rules.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
|
||||
#define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
|
||||
|
||||
#include "Graph.h"
|
||||
#include "Math.h"
|
||||
#include "Solution.h"
|
||||
#include <cassert>
|
||||
#include <limits>
|
||||
|
||||
namespace llvm {
|
||||
namespace PBQP {
|
||||
|
||||
/// Reduce a node of degree one.
|
||||
///
|
||||
/// Propagate costs from the given node, which must be of degree one, to its
|
||||
/// neighbor. Notify the problem domain.
|
||||
template <typename GraphT>
|
||||
void applyR1(GraphT &G, typename GraphT::NodeId NId) {
|
||||
using NodeId = typename GraphT::NodeId;
|
||||
using EdgeId = typename GraphT::EdgeId;
|
||||
using Vector = typename GraphT::Vector;
|
||||
using Matrix = typename GraphT::Matrix;
|
||||
using RawVector = typename GraphT::RawVector;
|
||||
|
||||
assert(G.getNodeDegree(NId) == 1 &&
|
||||
"R1 applied to node with degree != 1.");
|
||||
|
||||
EdgeId EId = *G.adjEdgeIds(NId).begin();
|
||||
NodeId MId = G.getEdgeOtherNodeId(EId, NId);
|
||||
|
||||
const Matrix &ECosts = G.getEdgeCosts(EId);
|
||||
const Vector &XCosts = G.getNodeCosts(NId);
|
||||
RawVector YCosts = G.getNodeCosts(MId);
|
||||
|
||||
// Duplicate a little to avoid transposing matrices.
|
||||
if (NId == G.getEdgeNode1Id(EId)) {
|
||||
for (unsigned j = 0; j < YCosts.getLength(); ++j) {
|
||||
PBQPNum Min = ECosts[0][j] + XCosts[0];
|
||||
for (unsigned i = 1; i < XCosts.getLength(); ++i) {
|
||||
PBQPNum C = ECosts[i][j] + XCosts[i];
|
||||
if (C < Min)
|
||||
Min = C;
|
||||
}
|
||||
YCosts[j] += Min;
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < YCosts.getLength(); ++i) {
|
||||
PBQPNum Min = ECosts[i][0] + XCosts[0];
|
||||
for (unsigned j = 1; j < XCosts.getLength(); ++j) {
|
||||
PBQPNum C = ECosts[i][j] + XCosts[j];
|
||||
if (C < Min)
|
||||
Min = C;
|
||||
}
|
||||
YCosts[i] += Min;
|
||||
}
|
||||
}
|
||||
G.setNodeCosts(MId, YCosts);
|
||||
G.disconnectEdge(EId, MId);
|
||||
}
|
||||
|
||||
template <typename GraphT>
|
||||
void applyR2(GraphT &G, typename GraphT::NodeId NId) {
|
||||
using NodeId = typename GraphT::NodeId;
|
||||
using EdgeId = typename GraphT::EdgeId;
|
||||
using Vector = typename GraphT::Vector;
|
||||
using Matrix = typename GraphT::Matrix;
|
||||
using RawMatrix = typename GraphT::RawMatrix;
|
||||
|
||||
assert(G.getNodeDegree(NId) == 2 &&
|
||||
"R2 applied to node with degree != 2.");
|
||||
|
||||
const Vector &XCosts = G.getNodeCosts(NId);
|
||||
|
||||
typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
|
||||
EdgeId YXEId = *AEItr,
|
||||
ZXEId = *(++AEItr);
|
||||
|
||||
NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
|
||||
ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
|
||||
|
||||
bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
|
||||
FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
|
||||
|
||||
const Matrix *YXECosts = FlipEdge1 ?
|
||||
new Matrix(G.getEdgeCosts(YXEId).transpose()) :
|
||||
&G.getEdgeCosts(YXEId);
|
||||
|
||||
const Matrix *ZXECosts = FlipEdge2 ?
|
||||
new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
|
||||
&G.getEdgeCosts(ZXEId);
|
||||
|
||||
unsigned XLen = XCosts.getLength(),
|
||||
YLen = YXECosts->getRows(),
|
||||
ZLen = ZXECosts->getRows();
|
||||
|
||||
RawMatrix Delta(YLen, ZLen);
|
||||
|
||||
for (unsigned i = 0; i < YLen; ++i) {
|
||||
for (unsigned j = 0; j < ZLen; ++j) {
|
||||
PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
|
||||
for (unsigned k = 1; k < XLen; ++k) {
|
||||
PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
|
||||
if (C < Min) {
|
||||
Min = C;
|
||||
}
|
||||
}
|
||||
Delta[i][j] = Min;
|
||||
}
|
||||
}
|
||||
|
||||
if (FlipEdge1)
|
||||
delete YXECosts;
|
||||
|
||||
if (FlipEdge2)
|
||||
delete ZXECosts;
|
||||
|
||||
EdgeId YZEId = G.findEdge(YNId, ZNId);
|
||||
|
||||
if (YZEId == G.invalidEdgeId()) {
|
||||
YZEId = G.addEdge(YNId, ZNId, Delta);
|
||||
} else {
|
||||
const Matrix &YZECosts = G.getEdgeCosts(YZEId);
|
||||
if (YNId == G.getEdgeNode1Id(YZEId)) {
|
||||
G.updateEdgeCosts(YZEId, Delta + YZECosts);
|
||||
} else {
|
||||
G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
|
||||
}
|
||||
}
|
||||
|
||||
G.disconnectEdge(YXEId, YNId);
|
||||
G.disconnectEdge(ZXEId, ZNId);
|
||||
|
||||
// TODO: Try to normalize newly added/modified edge.
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Does this Cost vector have any register options ?
|
||||
template <typename VectorT>
|
||||
bool hasRegisterOptions(const VectorT &V) {
|
||||
unsigned VL = V.getLength();
|
||||
|
||||
// An empty or spill only cost vector does not provide any register option.
|
||||
if (VL <= 1)
|
||||
return false;
|
||||
|
||||
// If there are registers in the cost vector, but all of them have infinite
|
||||
// costs, then ... there is no available register.
|
||||
for (unsigned i = 1; i < VL; ++i)
|
||||
if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Find a solution to a fully reduced graph by backpropagation.
|
||||
//
|
||||
// Given a graph and a reduction order, pop each node from the reduction
|
||||
// order and greedily compute a minimum solution based on the node costs, and
|
||||
// the dependent costs due to previously solved nodes.
|
||||
//
|
||||
// Note - This does not return the graph to its original (pre-reduction)
|
||||
// state: the existing solvers destructively alter the node and edge
|
||||
// costs. Given that, the backpropagate function doesn't attempt to
|
||||
// replace the edges either, but leaves the graph in its reduced
|
||||
// state.
|
||||
template <typename GraphT, typename StackT>
|
||||
Solution backpropagate(GraphT& G, StackT stack) {
|
||||
using NodeId = GraphBase::NodeId;
|
||||
using Matrix = typename GraphT::Matrix;
|
||||
using RawVector = typename GraphT::RawVector;
|
||||
|
||||
Solution s;
|
||||
|
||||
while (!stack.empty()) {
|
||||
NodeId NId = stack.back();
|
||||
stack.pop_back();
|
||||
|
||||
RawVector v = G.getNodeCosts(NId);
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Although a conservatively allocatable node can be allocated to a register,
|
||||
// spilling it may provide a lower cost solution. Assert here that spilling
|
||||
// is done by choice, not because there were no register available.
|
||||
if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
|
||||
assert(hasRegisterOptions(v) && "A conservatively allocatable node "
|
||||
"must have available register options");
|
||||
#endif
|
||||
|
||||
for (auto EId : G.adjEdgeIds(NId)) {
|
||||
const Matrix& edgeCosts = G.getEdgeCosts(EId);
|
||||
if (NId == G.getEdgeNode1Id(EId)) {
|
||||
NodeId mId = G.getEdgeNode2Id(EId);
|
||||
v += edgeCosts.getColAsVector(s.getSelection(mId));
|
||||
} else {
|
||||
NodeId mId = G.getEdgeNode1Id(EId);
|
||||
v += edgeCosts.getRowAsVector(s.getSelection(mId));
|
||||
}
|
||||
}
|
||||
|
||||
s.setSelection(NId, v.minIndex());
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
} // end namespace PBQP
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
|
||||
55
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/PBQP/Solution.h
vendored
Normal file
55
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/PBQP/Solution.h
vendored
Normal file
@@ -0,0 +1,55 @@
|
||||
//===- Solution.h - PBQP Solution -------------------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// PBQP Solution class.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_PBQP_SOLUTION_H
|
||||
#define LLVM_CODEGEN_PBQP_SOLUTION_H
|
||||
|
||||
#include "llvm/CodeGen/PBQP/Graph.h"
|
||||
#include <cassert>
|
||||
#include <map>
|
||||
|
||||
namespace llvm {
|
||||
namespace PBQP {
|
||||
|
||||
/// Represents a solution to a PBQP problem.
|
||||
///
|
||||
/// To get the selection for each node in the problem use the getSelection method.
|
||||
class Solution {
|
||||
private:
|
||||
using SelectionsMap = std::map<GraphBase::NodeId, unsigned>;
|
||||
SelectionsMap selections;
|
||||
|
||||
public:
|
||||
/// Initialise an empty solution.
|
||||
Solution() = default;
|
||||
|
||||
/// Set the selection for a given node.
|
||||
/// @param nodeId Node id.
|
||||
/// @param selection Selection for nodeId.
|
||||
void setSelection(GraphBase::NodeId nodeId, unsigned selection) {
|
||||
selections[nodeId] = selection;
|
||||
}
|
||||
|
||||
/// Get a node's selection.
|
||||
/// @param nodeId Node id.
|
||||
/// @return The selection for nodeId;
|
||||
unsigned getSelection(GraphBase::NodeId nodeId) const {
|
||||
SelectionsMap::const_iterator sItr = selections.find(nodeId);
|
||||
assert(sItr != selections.end() && "No selection for node.");
|
||||
return sItr->second;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace PBQP
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_SOLUTION_H
|
||||
Reference in New Issue
Block a user