mirror of
https://github.com/hedge-dev/XenonRecomp.git
synced 2025-12-11 22:44:59 +00:00
Initial Commit
This commit is contained in:
787
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/ScheduleDAG.h
vendored
Normal file
787
thirdparty/capstone/suite/synctools/tablegen/include/llvm/CodeGen/ScheduleDAG.h
vendored
Normal file
@@ -0,0 +1,787 @@
|
||||
//===- llvm/CodeGen/ScheduleDAG.h - Common Base Class -----------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
/// \file Implements the ScheduleDAG class, which is used as the common base
|
||||
/// class for instruction schedulers. This encapsulates the scheduling DAG,
|
||||
/// which is shared between SelectionDAG and MachineInstr scheduling.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
|
||||
#define LLVM_CODEGEN_SCHEDULEDAG_H
|
||||
|
||||
#include "llvm/ADT/BitVector.h"
|
||||
#include "llvm/ADT/GraphTraits.h"
|
||||
#include "llvm/ADT/PointerIntPair.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/iterator.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/CodeGen/TargetLowering.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <iterator>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
template<class Graph> class GraphWriter;
|
||||
class LLVMTargetMachine;
|
||||
class MachineFunction;
|
||||
class MachineRegisterInfo;
|
||||
class MCInstrDesc;
|
||||
struct MCSchedClassDesc;
|
||||
class SDNode;
|
||||
class SUnit;
|
||||
class ScheduleDAG;
|
||||
class TargetInstrInfo;
|
||||
class TargetRegisterClass;
|
||||
class TargetRegisterInfo;
|
||||
|
||||
/// Scheduling dependency. This represents one direction of an edge in the
|
||||
/// scheduling DAG.
|
||||
class SDep {
|
||||
public:
|
||||
/// These are the different kinds of scheduling dependencies.
|
||||
enum Kind {
|
||||
Data, ///< Regular data dependence (aka true-dependence).
|
||||
Anti, ///< A register anti-dependence (aka WAR).
|
||||
Output, ///< A register output-dependence (aka WAW).
|
||||
Order ///< Any other ordering dependency.
|
||||
};
|
||||
|
||||
// Strong dependencies must be respected by the scheduler. Artificial
|
||||
// dependencies may be removed only if they are redundant with another
|
||||
// strong dependence.
|
||||
//
|
||||
// Weak dependencies may be violated by the scheduling strategy, but only if
|
||||
// the strategy can prove it is correct to do so.
|
||||
//
|
||||
// Strong OrderKinds must occur before "Weak".
|
||||
// Weak OrderKinds must occur after "Weak".
|
||||
enum OrderKind {
|
||||
Barrier, ///< An unknown scheduling barrier.
|
||||
MayAliasMem, ///< Nonvolatile load/Store instructions that may alias.
|
||||
MustAliasMem, ///< Nonvolatile load/Store instructions that must alias.
|
||||
Artificial, ///< Arbitrary strong DAG edge (no real dependence).
|
||||
Weak, ///< Arbitrary weak DAG edge.
|
||||
Cluster ///< Weak DAG edge linking a chain of clustered instrs.
|
||||
};
|
||||
|
||||
private:
|
||||
/// A pointer to the depending/depended-on SUnit, and an enum
|
||||
/// indicating the kind of the dependency.
|
||||
PointerIntPair<SUnit *, 2, Kind> Dep;
|
||||
|
||||
/// A union discriminated by the dependence kind.
|
||||
union {
|
||||
/// For Data, Anti, and Output dependencies, the associated register. For
|
||||
/// Data dependencies that don't currently have a register/ assigned, this
|
||||
/// is set to zero.
|
||||
unsigned Reg;
|
||||
|
||||
/// Additional information about Order dependencies.
|
||||
unsigned OrdKind; // enum OrderKind
|
||||
} Contents;
|
||||
|
||||
/// The time associated with this edge. Often this is just the value of the
|
||||
/// Latency field of the predecessor, however advanced models may provide
|
||||
/// additional information about specific edges.
|
||||
unsigned Latency;
|
||||
|
||||
public:
|
||||
/// Constructs a null SDep. This is only for use by container classes which
|
||||
/// require default constructors. SUnits may not/ have null SDep edges.
|
||||
SDep() : Dep(nullptr, Data) {}
|
||||
|
||||
/// Constructs an SDep with the specified values.
|
||||
SDep(SUnit *S, Kind kind, unsigned Reg)
|
||||
: Dep(S, kind), Contents() {
|
||||
switch (kind) {
|
||||
default:
|
||||
llvm_unreachable("Reg given for non-register dependence!");
|
||||
case Anti:
|
||||
case Output:
|
||||
assert(Reg != 0 &&
|
||||
"SDep::Anti and SDep::Output must use a non-zero Reg!");
|
||||
Contents.Reg = Reg;
|
||||
Latency = 0;
|
||||
break;
|
||||
case Data:
|
||||
Contents.Reg = Reg;
|
||||
Latency = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
SDep(SUnit *S, OrderKind kind)
|
||||
: Dep(S, Order), Contents(), Latency(0) {
|
||||
Contents.OrdKind = kind;
|
||||
}
|
||||
|
||||
/// Returns true if the specified SDep is equivalent except for latency.
|
||||
bool overlaps(const SDep &Other) const;
|
||||
|
||||
bool operator==(const SDep &Other) const {
|
||||
return overlaps(Other) && Latency == Other.Latency;
|
||||
}
|
||||
|
||||
bool operator!=(const SDep &Other) const {
|
||||
return !operator==(Other);
|
||||
}
|
||||
|
||||
/// Returns the latency value for this edge, which roughly means the
|
||||
/// minimum number of cycles that must elapse between the predecessor and
|
||||
/// the successor, given that they have this edge between them.
|
||||
unsigned getLatency() const {
|
||||
return Latency;
|
||||
}
|
||||
|
||||
/// Sets the latency for this edge.
|
||||
void setLatency(unsigned Lat) {
|
||||
Latency = Lat;
|
||||
}
|
||||
|
||||
//// Returns the SUnit to which this edge points.
|
||||
SUnit *getSUnit() const;
|
||||
|
||||
//// Assigns the SUnit to which this edge points.
|
||||
void setSUnit(SUnit *SU);
|
||||
|
||||
/// Returns an enum value representing the kind of the dependence.
|
||||
Kind getKind() const;
|
||||
|
||||
/// Shorthand for getKind() != SDep::Data.
|
||||
bool isCtrl() const {
|
||||
return getKind() != Data;
|
||||
}
|
||||
|
||||
/// Tests if this is an Order dependence between two memory accesses
|
||||
/// where both sides of the dependence access memory in non-volatile and
|
||||
/// fully modeled ways.
|
||||
bool isNormalMemory() const {
|
||||
return getKind() == Order && (Contents.OrdKind == MayAliasMem
|
||||
|| Contents.OrdKind == MustAliasMem);
|
||||
}
|
||||
|
||||
/// Tests if this is an Order dependence that is marked as a barrier.
|
||||
bool isBarrier() const {
|
||||
return getKind() == Order && Contents.OrdKind == Barrier;
|
||||
}
|
||||
|
||||
/// Tests if this could be any kind of memory dependence.
|
||||
bool isNormalMemoryOrBarrier() const {
|
||||
return (isNormalMemory() || isBarrier());
|
||||
}
|
||||
|
||||
/// Tests if this is an Order dependence that is marked as
|
||||
/// "must alias", meaning that the SUnits at either end of the edge have a
|
||||
/// memory dependence on a known memory location.
|
||||
bool isMustAlias() const {
|
||||
return getKind() == Order && Contents.OrdKind == MustAliasMem;
|
||||
}
|
||||
|
||||
/// Tests if this a weak dependence. Weak dependencies are considered DAG
|
||||
/// edges for height computation and other heuristics, but do not force
|
||||
/// ordering. Breaking a weak edge may require the scheduler to compensate,
|
||||
/// for example by inserting a copy.
|
||||
bool isWeak() const {
|
||||
return getKind() == Order && Contents.OrdKind >= Weak;
|
||||
}
|
||||
|
||||
/// Tests if this is an Order dependence that is marked as
|
||||
/// "artificial", meaning it isn't necessary for correctness.
|
||||
bool isArtificial() const {
|
||||
return getKind() == Order && Contents.OrdKind == Artificial;
|
||||
}
|
||||
|
||||
/// Tests if this is an Order dependence that is marked as "cluster",
|
||||
/// meaning it is artificial and wants to be adjacent.
|
||||
bool isCluster() const {
|
||||
return getKind() == Order && Contents.OrdKind == Cluster;
|
||||
}
|
||||
|
||||
/// Tests if this is a Data dependence that is associated with a register.
|
||||
bool isAssignedRegDep() const {
|
||||
return getKind() == Data && Contents.Reg != 0;
|
||||
}
|
||||
|
||||
/// Returns the register associated with this edge. This is only valid on
|
||||
/// Data, Anti, and Output edges. On Data edges, this value may be zero,
|
||||
/// meaning there is no associated register.
|
||||
unsigned getReg() const {
|
||||
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
|
||||
"getReg called on non-register dependence edge!");
|
||||
return Contents.Reg;
|
||||
}
|
||||
|
||||
/// Assigns the associated register for this edge. This is only valid on
|
||||
/// Data, Anti, and Output edges. On Anti and Output edges, this value must
|
||||
/// not be zero. On Data edges, the value may be zero, which would mean that
|
||||
/// no specific register is associated with this edge.
|
||||
void setReg(unsigned Reg) {
|
||||
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
|
||||
"setReg called on non-register dependence edge!");
|
||||
assert((getKind() != Anti || Reg != 0) &&
|
||||
"SDep::Anti edge cannot use the zero register!");
|
||||
assert((getKind() != Output || Reg != 0) &&
|
||||
"SDep::Output edge cannot use the zero register!");
|
||||
Contents.Reg = Reg;
|
||||
}
|
||||
|
||||
void dump(const TargetRegisterInfo *TRI = nullptr) const;
|
||||
};
|
||||
|
||||
/// Scheduling unit. This is a node in the scheduling DAG.
|
||||
class SUnit {
|
||||
private:
|
||||
enum : unsigned { BoundaryID = ~0u };
|
||||
|
||||
SDNode *Node = nullptr; ///< Representative node.
|
||||
MachineInstr *Instr = nullptr; ///< Alternatively, a MachineInstr.
|
||||
|
||||
public:
|
||||
SUnit *OrigNode = nullptr; ///< If not this, the node from which this node
|
||||
/// was cloned. (SD scheduling only)
|
||||
|
||||
const MCSchedClassDesc *SchedClass =
|
||||
nullptr; ///< nullptr or resolved SchedClass.
|
||||
|
||||
SmallVector<SDep, 4> Preds; ///< All sunit predecessors.
|
||||
SmallVector<SDep, 4> Succs; ///< All sunit successors.
|
||||
|
||||
typedef SmallVectorImpl<SDep>::iterator pred_iterator;
|
||||
typedef SmallVectorImpl<SDep>::iterator succ_iterator;
|
||||
typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator;
|
||||
typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator;
|
||||
|
||||
unsigned NodeNum = BoundaryID; ///< Entry # of node in the node vector.
|
||||
unsigned NodeQueueId = 0; ///< Queue id of node.
|
||||
unsigned NumPreds = 0; ///< # of SDep::Data preds.
|
||||
unsigned NumSuccs = 0; ///< # of SDep::Data sucss.
|
||||
unsigned NumPredsLeft = 0; ///< # of preds not scheduled.
|
||||
unsigned NumSuccsLeft = 0; ///< # of succs not scheduled.
|
||||
unsigned WeakPredsLeft = 0; ///< # of weak preds not scheduled.
|
||||
unsigned WeakSuccsLeft = 0; ///< # of weak succs not scheduled.
|
||||
unsigned short NumRegDefsLeft = 0; ///< # of reg defs with no scheduled use.
|
||||
unsigned short Latency = 0; ///< Node latency.
|
||||
bool isVRegCycle : 1; ///< May use and def the same vreg.
|
||||
bool isCall : 1; ///< Is a function call.
|
||||
bool isCallOp : 1; ///< Is a function call operand.
|
||||
bool isTwoAddress : 1; ///< Is a two-address instruction.
|
||||
bool isCommutable : 1; ///< Is a commutable instruction.
|
||||
bool hasPhysRegUses : 1; ///< Has physreg uses.
|
||||
bool hasPhysRegDefs : 1; ///< Has physreg defs that are being used.
|
||||
bool hasPhysRegClobbers : 1; ///< Has any physreg defs, used or not.
|
||||
bool isPending : 1; ///< True once pending.
|
||||
bool isAvailable : 1; ///< True once available.
|
||||
bool isScheduled : 1; ///< True once scheduled.
|
||||
bool isScheduleHigh : 1; ///< True if preferable to schedule high.
|
||||
bool isScheduleLow : 1; ///< True if preferable to schedule low.
|
||||
bool isCloned : 1; ///< True if this node has been cloned.
|
||||
bool isUnbuffered : 1; ///< Uses an unbuffered resource.
|
||||
bool hasReservedResource : 1; ///< Uses a reserved resource.
|
||||
Sched::Preference SchedulingPref = Sched::None; ///< Scheduling preference.
|
||||
|
||||
private:
|
||||
bool isDepthCurrent : 1; ///< True if Depth is current.
|
||||
bool isHeightCurrent : 1; ///< True if Height is current.
|
||||
unsigned Depth = 0; ///< Node depth.
|
||||
unsigned Height = 0; ///< Node height.
|
||||
|
||||
public:
|
||||
unsigned TopReadyCycle = 0; ///< Cycle relative to start when node is ready.
|
||||
unsigned BotReadyCycle = 0; ///< Cycle relative to end when node is ready.
|
||||
|
||||
const TargetRegisterClass *CopyDstRC =
|
||||
nullptr; ///< Is a special copy node if != nullptr.
|
||||
const TargetRegisterClass *CopySrcRC = nullptr;
|
||||
|
||||
/// Constructs an SUnit for pre-regalloc scheduling to represent an
|
||||
/// SDNode and any nodes flagged to it.
|
||||
SUnit(SDNode *node, unsigned nodenum)
|
||||
: Node(node), NodeNum(nodenum), isVRegCycle(false), isCall(false),
|
||||
isCallOp(false), isTwoAddress(false), isCommutable(false),
|
||||
hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
|
||||
isPending(false), isAvailable(false), isScheduled(false),
|
||||
isScheduleHigh(false), isScheduleLow(false), isCloned(false),
|
||||
isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
|
||||
isHeightCurrent(false) {}
|
||||
|
||||
/// Constructs an SUnit for post-regalloc scheduling to represent a
|
||||
/// MachineInstr.
|
||||
SUnit(MachineInstr *instr, unsigned nodenum)
|
||||
: Instr(instr), NodeNum(nodenum), isVRegCycle(false), isCall(false),
|
||||
isCallOp(false), isTwoAddress(false), isCommutable(false),
|
||||
hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
|
||||
isPending(false), isAvailable(false), isScheduled(false),
|
||||
isScheduleHigh(false), isScheduleLow(false), isCloned(false),
|
||||
isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
|
||||
isHeightCurrent(false) {}
|
||||
|
||||
/// Constructs a placeholder SUnit.
|
||||
SUnit()
|
||||
: isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
|
||||
isCommutable(false), hasPhysRegUses(false), hasPhysRegDefs(false),
|
||||
hasPhysRegClobbers(false), isPending(false), isAvailable(false),
|
||||
isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
|
||||
isCloned(false), isUnbuffered(false), hasReservedResource(false),
|
||||
isDepthCurrent(false), isHeightCurrent(false) {}
|
||||
|
||||
/// Boundary nodes are placeholders for the boundary of the
|
||||
/// scheduling region.
|
||||
///
|
||||
/// BoundaryNodes can have DAG edges, including Data edges, but they do not
|
||||
/// correspond to schedulable entities (e.g. instructions) and do not have a
|
||||
/// valid ID. Consequently, always check for boundary nodes before accessing
|
||||
/// an associative data structure keyed on node ID.
|
||||
bool isBoundaryNode() const { return NodeNum == BoundaryID; }
|
||||
|
||||
/// Assigns the representative SDNode for this SUnit. This may be used
|
||||
/// during pre-regalloc scheduling.
|
||||
void setNode(SDNode *N) {
|
||||
assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
|
||||
Node = N;
|
||||
}
|
||||
|
||||
/// Returns the representative SDNode for this SUnit. This may be used
|
||||
/// during pre-regalloc scheduling.
|
||||
SDNode *getNode() const {
|
||||
assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
|
||||
return Node;
|
||||
}
|
||||
|
||||
/// Returns true if this SUnit refers to a machine instruction as
|
||||
/// opposed to an SDNode.
|
||||
bool isInstr() const { return Instr; }
|
||||
|
||||
/// Assigns the instruction for the SUnit. This may be used during
|
||||
/// post-regalloc scheduling.
|
||||
void setInstr(MachineInstr *MI) {
|
||||
assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
|
||||
Instr = MI;
|
||||
}
|
||||
|
||||
/// Returns the representative MachineInstr for this SUnit. This may be used
|
||||
/// during post-regalloc scheduling.
|
||||
MachineInstr *getInstr() const {
|
||||
assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
|
||||
return Instr;
|
||||
}
|
||||
|
||||
/// Adds the specified edge as a pred of the current node if not already.
|
||||
/// It also adds the current node as a successor of the specified node.
|
||||
bool addPred(const SDep &D, bool Required = true);
|
||||
|
||||
/// Adds a barrier edge to SU by calling addPred(), with latency 0
|
||||
/// generally or latency 1 for a store followed by a load.
|
||||
bool addPredBarrier(SUnit *SU) {
|
||||
SDep Dep(SU, SDep::Barrier);
|
||||
unsigned TrueMemOrderLatency =
|
||||
((SU->getInstr()->mayStore() && this->getInstr()->mayLoad()) ? 1 : 0);
|
||||
Dep.setLatency(TrueMemOrderLatency);
|
||||
return addPred(Dep);
|
||||
}
|
||||
|
||||
/// Removes the specified edge as a pred of the current node if it exists.
|
||||
/// It also removes the current node as a successor of the specified node.
|
||||
void removePred(const SDep &D);
|
||||
|
||||
/// Returns the depth of this node, which is the length of the maximum path
|
||||
/// up to any node which has no predecessors.
|
||||
unsigned getDepth() const {
|
||||
if (!isDepthCurrent)
|
||||
const_cast<SUnit *>(this)->ComputeDepth();
|
||||
return Depth;
|
||||
}
|
||||
|
||||
/// Returns the height of this node, which is the length of the
|
||||
/// maximum path down to any node which has no successors.
|
||||
unsigned getHeight() const {
|
||||
if (!isHeightCurrent)
|
||||
const_cast<SUnit *>(this)->ComputeHeight();
|
||||
return Height;
|
||||
}
|
||||
|
||||
/// If NewDepth is greater than this node's depth value, sets it to
|
||||
/// be the new depth value. This also recursively marks successor nodes
|
||||
/// dirty.
|
||||
void setDepthToAtLeast(unsigned NewDepth);
|
||||
|
||||
/// If NewHeight is greater than this node's height value, set it to be
|
||||
/// the new height value. This also recursively marks predecessor nodes
|
||||
/// dirty.
|
||||
void setHeightToAtLeast(unsigned NewHeight);
|
||||
|
||||
/// Sets a flag in this node to indicate that its stored Depth value
|
||||
/// will require recomputation the next time getDepth() is called.
|
||||
void setDepthDirty();
|
||||
|
||||
/// Sets a flag in this node to indicate that its stored Height value
|
||||
/// will require recomputation the next time getHeight() is called.
|
||||
void setHeightDirty();
|
||||
|
||||
/// Tests if node N is a predecessor of this node.
|
||||
bool isPred(const SUnit *N) const {
|
||||
for (const SDep &Pred : Preds)
|
||||
if (Pred.getSUnit() == N)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Tests if node N is a successor of this node.
|
||||
bool isSucc(const SUnit *N) const {
|
||||
for (const SDep &Succ : Succs)
|
||||
if (Succ.getSUnit() == N)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool isTopReady() const {
|
||||
return NumPredsLeft == 0;
|
||||
}
|
||||
bool isBottomReady() const {
|
||||
return NumSuccsLeft == 0;
|
||||
}
|
||||
|
||||
/// Orders this node's predecessor edges such that the critical path
|
||||
/// edge occurs first.
|
||||
void biasCriticalPath();
|
||||
|
||||
void dumpAttributes() const;
|
||||
|
||||
private:
|
||||
void ComputeDepth();
|
||||
void ComputeHeight();
|
||||
};
|
||||
|
||||
/// Returns true if the specified SDep is equivalent except for latency.
|
||||
inline bool SDep::overlaps(const SDep &Other) const {
|
||||
if (Dep != Other.Dep)
|
||||
return false;
|
||||
switch (Dep.getInt()) {
|
||||
case Data:
|
||||
case Anti:
|
||||
case Output:
|
||||
return Contents.Reg == Other.Contents.Reg;
|
||||
case Order:
|
||||
return Contents.OrdKind == Other.Contents.OrdKind;
|
||||
}
|
||||
llvm_unreachable("Invalid dependency kind!");
|
||||
}
|
||||
|
||||
//// Returns the SUnit to which this edge points.
|
||||
inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); }
|
||||
|
||||
//// Assigns the SUnit to which this edge points.
|
||||
inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); }
|
||||
|
||||
/// Returns an enum value representing the kind of the dependence.
|
||||
inline SDep::Kind SDep::getKind() const { return Dep.getInt(); }
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
/// This interface is used to plug different priorities computation
|
||||
/// algorithms into the list scheduler. It implements the interface of a
|
||||
/// standard priority queue, where nodes are inserted in arbitrary order and
|
||||
/// returned in priority order. The computation of the priority and the
|
||||
/// representation of the queue are totally up to the implementation to
|
||||
/// decide.
|
||||
class SchedulingPriorityQueue {
|
||||
virtual void anchor();
|
||||
|
||||
unsigned CurCycle = 0;
|
||||
bool HasReadyFilter;
|
||||
|
||||
public:
|
||||
SchedulingPriorityQueue(bool rf = false) : HasReadyFilter(rf) {}
|
||||
|
||||
virtual ~SchedulingPriorityQueue() = default;
|
||||
|
||||
virtual bool isBottomUp() const = 0;
|
||||
|
||||
virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
|
||||
virtual void addNode(const SUnit *SU) = 0;
|
||||
virtual void updateNode(const SUnit *SU) = 0;
|
||||
virtual void releaseState() = 0;
|
||||
|
||||
virtual bool empty() const = 0;
|
||||
|
||||
bool hasReadyFilter() const { return HasReadyFilter; }
|
||||
|
||||
virtual bool tracksRegPressure() const { return false; }
|
||||
|
||||
virtual bool isReady(SUnit *) const {
|
||||
assert(!HasReadyFilter && "The ready filter must override isReady()");
|
||||
return true;
|
||||
}
|
||||
|
||||
virtual void push(SUnit *U) = 0;
|
||||
|
||||
void push_all(const std::vector<SUnit *> &Nodes) {
|
||||
for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
|
||||
E = Nodes.end(); I != E; ++I)
|
||||
push(*I);
|
||||
}
|
||||
|
||||
virtual SUnit *pop() = 0;
|
||||
|
||||
virtual void remove(SUnit *SU) = 0;
|
||||
|
||||
virtual void dump(ScheduleDAG *) const {}
|
||||
|
||||
/// As each node is scheduled, this method is invoked. This allows the
|
||||
/// priority function to adjust the priority of related unscheduled nodes,
|
||||
/// for example.
|
||||
virtual void scheduledNode(SUnit *) {}
|
||||
|
||||
virtual void unscheduledNode(SUnit *) {}
|
||||
|
||||
void setCurCycle(unsigned Cycle) {
|
||||
CurCycle = Cycle;
|
||||
}
|
||||
|
||||
unsigned getCurCycle() const {
|
||||
return CurCycle;
|
||||
}
|
||||
};
|
||||
|
||||
class ScheduleDAG {
|
||||
public:
|
||||
const LLVMTargetMachine &TM; ///< Target processor
|
||||
const TargetInstrInfo *TII; ///< Target instruction information
|
||||
const TargetRegisterInfo *TRI; ///< Target processor register info
|
||||
MachineFunction &MF; ///< Machine function
|
||||
MachineRegisterInfo &MRI; ///< Virtual/real register map
|
||||
std::vector<SUnit> SUnits; ///< The scheduling units.
|
||||
SUnit EntrySU; ///< Special node for the region entry.
|
||||
SUnit ExitSU; ///< Special node for the region exit.
|
||||
|
||||
#ifdef NDEBUG
|
||||
static const bool StressSched = false;
|
||||
#else
|
||||
bool StressSched;
|
||||
#endif
|
||||
|
||||
explicit ScheduleDAG(MachineFunction &mf);
|
||||
|
||||
virtual ~ScheduleDAG();
|
||||
|
||||
/// Clears the DAG state (between regions).
|
||||
void clearDAG();
|
||||
|
||||
/// Returns the MCInstrDesc of this SUnit.
|
||||
/// Returns NULL for SDNodes without a machine opcode.
|
||||
const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
|
||||
if (SU->isInstr()) return &SU->getInstr()->getDesc();
|
||||
return getNodeDesc(SU->getNode());
|
||||
}
|
||||
|
||||
/// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'.
|
||||
virtual void viewGraph(const Twine &Name, const Twine &Title);
|
||||
virtual void viewGraph();
|
||||
|
||||
virtual void dumpNode(const SUnit &SU) const = 0;
|
||||
virtual void dump() const = 0;
|
||||
void dumpNodeName(const SUnit &SU) const;
|
||||
|
||||
/// Returns a label for an SUnit node in a visualization of the ScheduleDAG.
|
||||
virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
|
||||
|
||||
/// Returns a label for the region of code covered by the DAG.
|
||||
virtual std::string getDAGName() const = 0;
|
||||
|
||||
/// Adds custom features for a visualization of the ScheduleDAG.
|
||||
virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
|
||||
|
||||
#ifndef NDEBUG
|
||||
/// Verifies that all SUnits were scheduled and that their state is
|
||||
/// consistent. Returns the number of scheduled SUnits.
|
||||
unsigned VerifyScheduledDAG(bool isBottomUp);
|
||||
#endif
|
||||
|
||||
protected:
|
||||
void dumpNodeAll(const SUnit &SU) const;
|
||||
|
||||
private:
|
||||
/// Returns the MCInstrDesc of this SDNode or NULL.
|
||||
const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
|
||||
};
|
||||
|
||||
class SUnitIterator {
|
||||
SUnit *Node;
|
||||
unsigned Operand;
|
||||
|
||||
SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
|
||||
|
||||
public:
|
||||
using iterator_category = std::forward_iterator_tag;
|
||||
using value_type = SUnit;
|
||||
using difference_type = std::ptrdiff_t;
|
||||
using pointer = value_type *;
|
||||
using reference = value_type &;
|
||||
|
||||
bool operator==(const SUnitIterator& x) const {
|
||||
return Operand == x.Operand;
|
||||
}
|
||||
bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
|
||||
|
||||
pointer operator*() const {
|
||||
return Node->Preds[Operand].getSUnit();
|
||||
}
|
||||
pointer operator->() const { return operator*(); }
|
||||
|
||||
SUnitIterator& operator++() { // Preincrement
|
||||
++Operand;
|
||||
return *this;
|
||||
}
|
||||
SUnitIterator operator++(int) { // Postincrement
|
||||
SUnitIterator tmp = *this; ++*this; return tmp;
|
||||
}
|
||||
|
||||
static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
|
||||
static SUnitIterator end (SUnit *N) {
|
||||
return SUnitIterator(N, (unsigned)N->Preds.size());
|
||||
}
|
||||
|
||||
unsigned getOperand() const { return Operand; }
|
||||
const SUnit *getNode() const { return Node; }
|
||||
|
||||
/// Tests if this is not an SDep::Data dependence.
|
||||
bool isCtrlDep() const {
|
||||
return getSDep().isCtrl();
|
||||
}
|
||||
bool isArtificialDep() const {
|
||||
return getSDep().isArtificial();
|
||||
}
|
||||
const SDep &getSDep() const {
|
||||
return Node->Preds[Operand];
|
||||
}
|
||||
};
|
||||
|
||||
template <> struct GraphTraits<SUnit*> {
|
||||
typedef SUnit *NodeRef;
|
||||
typedef SUnitIterator ChildIteratorType;
|
||||
static NodeRef getEntryNode(SUnit *N) { return N; }
|
||||
static ChildIteratorType child_begin(NodeRef N) {
|
||||
return SUnitIterator::begin(N);
|
||||
}
|
||||
static ChildIteratorType child_end(NodeRef N) {
|
||||
return SUnitIterator::end(N);
|
||||
}
|
||||
};
|
||||
|
||||
template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
|
||||
typedef pointer_iterator<std::vector<SUnit>::iterator> nodes_iterator;
|
||||
static nodes_iterator nodes_begin(ScheduleDAG *G) {
|
||||
return nodes_iterator(G->SUnits.begin());
|
||||
}
|
||||
static nodes_iterator nodes_end(ScheduleDAG *G) {
|
||||
return nodes_iterator(G->SUnits.end());
|
||||
}
|
||||
};
|
||||
|
||||
/// This class can compute a topological ordering for SUnits and provides
|
||||
/// methods for dynamically updating the ordering as new edges are added.
|
||||
///
|
||||
/// This allows a very fast implementation of IsReachable, for example.
|
||||
class ScheduleDAGTopologicalSort {
|
||||
/// A reference to the ScheduleDAG's SUnits.
|
||||
std::vector<SUnit> &SUnits;
|
||||
SUnit *ExitSU;
|
||||
|
||||
// Have any new nodes been added?
|
||||
bool Dirty = false;
|
||||
|
||||
// Outstanding added edges, that have not been applied to the ordering.
|
||||
SmallVector<std::pair<SUnit *, SUnit *>, 16> Updates;
|
||||
|
||||
/// Maps topological index to the node number.
|
||||
std::vector<int> Index2Node;
|
||||
/// Maps the node number to its topological index.
|
||||
std::vector<int> Node2Index;
|
||||
/// a set of nodes visited during a DFS traversal.
|
||||
BitVector Visited;
|
||||
|
||||
/// Makes a DFS traversal and mark all nodes affected by the edge insertion.
|
||||
/// These nodes will later get new topological indexes by means of the Shift
|
||||
/// method.
|
||||
void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
|
||||
|
||||
/// Reassigns topological indexes for the nodes in the DAG to
|
||||
/// preserve the topological ordering.
|
||||
void Shift(BitVector& Visited, int LowerBound, int UpperBound);
|
||||
|
||||
/// Assigns the topological index to the node n.
|
||||
void Allocate(int n, int index);
|
||||
|
||||
/// Fix the ordering, by either recomputing from scratch or by applying
|
||||
/// any outstanding updates. Uses a heuristic to estimate what will be
|
||||
/// cheaper.
|
||||
void FixOrder();
|
||||
|
||||
public:
|
||||
ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);
|
||||
|
||||
/// Add a SUnit without predecessors to the end of the topological order. It
|
||||
/// also must be the first new node added to the DAG.
|
||||
void AddSUnitWithoutPredecessors(const SUnit *SU);
|
||||
|
||||
/// Creates the initial topological ordering from the DAG to be scheduled.
|
||||
void InitDAGTopologicalSorting();
|
||||
|
||||
/// Returns an array of SUs that are both in the successor
|
||||
/// subtree of StartSU and in the predecessor subtree of TargetSU.
|
||||
/// StartSU and TargetSU are not in the array.
|
||||
/// Success is false if TargetSU is not in the successor subtree of
|
||||
/// StartSU, else it is true.
|
||||
std::vector<int> GetSubGraph(const SUnit &StartSU, const SUnit &TargetSU,
|
||||
bool &Success);
|
||||
|
||||
/// Checks if \p SU is reachable from \p TargetSU.
|
||||
bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
|
||||
|
||||
/// Returns true if addPred(TargetSU, SU) creates a cycle.
|
||||
bool WillCreateCycle(SUnit *TargetSU, SUnit *SU);
|
||||
|
||||
/// Updates the topological ordering to accommodate an edge to be
|
||||
/// added from SUnit \p X to SUnit \p Y.
|
||||
void AddPred(SUnit *Y, SUnit *X);
|
||||
|
||||
/// Queues an update to the topological ordering to accommodate an edge to
|
||||
/// be added from SUnit \p X to SUnit \p Y.
|
||||
void AddPredQueued(SUnit *Y, SUnit *X);
|
||||
|
||||
/// Updates the topological ordering to accommodate an edge to be
|
||||
/// removed from the specified node \p N from the predecessors of the
|
||||
/// current node \p M.
|
||||
void RemovePred(SUnit *M, SUnit *N);
|
||||
|
||||
/// Mark the ordering as temporarily broken, after a new node has been
|
||||
/// added.
|
||||
void MarkDirty() { Dirty = true; }
|
||||
|
||||
typedef std::vector<int>::iterator iterator;
|
||||
typedef std::vector<int>::const_iterator const_iterator;
|
||||
iterator begin() { return Index2Node.begin(); }
|
||||
const_iterator begin() const { return Index2Node.begin(); }
|
||||
iterator end() { return Index2Node.end(); }
|
||||
const_iterator end() const { return Index2Node.end(); }
|
||||
|
||||
typedef std::vector<int>::reverse_iterator reverse_iterator;
|
||||
typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
|
||||
reverse_iterator rbegin() { return Index2Node.rbegin(); }
|
||||
const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
|
||||
reverse_iterator rend() { return Index2Node.rend(); }
|
||||
const_reverse_iterator rend() const { return Index2Node.rend(); }
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_CODEGEN_SCHEDULEDAG_H
|
||||
Reference in New Issue
Block a user