mirror of
https://github.com/hedge-dev/XenonRecomp.git
synced 2025-12-13 15:24:57 +00:00
Initial Commit
This commit is contained in:
405
thirdparty/capstone/suite/synctools/tablegen/include/llvm/IR/CFG.h
vendored
Normal file
405
thirdparty/capstone/suite/synctools/tablegen/include/llvm/IR/CFG.h
vendored
Normal file
@@ -0,0 +1,405 @@
|
||||
//===- CFG.h ----------------------------------------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// \file
|
||||
///
|
||||
/// This file provides various utilities for inspecting and working with the
|
||||
/// control flow graph in LLVM IR. This includes generic facilities for
|
||||
/// iterating successors and predecessors of basic blocks, the successors of
|
||||
/// specific terminator instructions, etc. It also defines specializations of
|
||||
/// GraphTraits that allow Function and BasicBlock graphs to be treated as
|
||||
/// proper graphs for generic algorithms.
|
||||
///
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_IR_CFG_H
|
||||
#define LLVM_IR_CFG_H
|
||||
|
||||
#include "llvm/ADT/GraphTraits.h"
|
||||
#include "llvm/ADT/iterator.h"
|
||||
#include "llvm/ADT/iterator_range.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/Value.h"
|
||||
#include "llvm/Support/Casting.h"
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <iterator>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Instruction;
|
||||
class Use;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// BasicBlock pred_iterator definition
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
template <class Ptr, class USE_iterator> // Predecessor Iterator
|
||||
class PredIterator {
|
||||
public:
|
||||
using iterator_category = std::forward_iterator_tag;
|
||||
using value_type = Ptr;
|
||||
using difference_type = std::ptrdiff_t;
|
||||
using pointer = Ptr *;
|
||||
using reference = Ptr *;
|
||||
|
||||
private:
|
||||
using Self = PredIterator<Ptr, USE_iterator>;
|
||||
USE_iterator It;
|
||||
|
||||
inline void advancePastNonTerminators() {
|
||||
// Loop to ignore non-terminator uses (for example BlockAddresses).
|
||||
while (!It.atEnd()) {
|
||||
if (auto *Inst = dyn_cast<Instruction>(*It))
|
||||
if (Inst->isTerminator())
|
||||
break;
|
||||
|
||||
++It;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
PredIterator() = default;
|
||||
explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
|
||||
advancePastNonTerminators();
|
||||
}
|
||||
inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
|
||||
|
||||
inline bool operator==(const Self& x) const { return It == x.It; }
|
||||
inline bool operator!=(const Self& x) const { return !operator==(x); }
|
||||
|
||||
inline reference operator*() const {
|
||||
assert(!It.atEnd() && "pred_iterator out of range!");
|
||||
return cast<Instruction>(*It)->getParent();
|
||||
}
|
||||
inline pointer *operator->() const { return &operator*(); }
|
||||
|
||||
inline Self& operator++() { // Preincrement
|
||||
assert(!It.atEnd() && "pred_iterator out of range!");
|
||||
++It; advancePastNonTerminators();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Self operator++(int) { // Postincrement
|
||||
Self tmp = *this; ++*this; return tmp;
|
||||
}
|
||||
|
||||
/// getOperandNo - Return the operand number in the predecessor's
|
||||
/// terminator of the successor.
|
||||
unsigned getOperandNo() const {
|
||||
return It.getOperandNo();
|
||||
}
|
||||
|
||||
/// getUse - Return the operand Use in the predecessor's terminator
|
||||
/// of the successor.
|
||||
Use &getUse() const {
|
||||
return It.getUse();
|
||||
}
|
||||
};
|
||||
|
||||
using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>;
|
||||
using const_pred_iterator =
|
||||
PredIterator<const BasicBlock, Value::const_user_iterator>;
|
||||
using pred_range = iterator_range<pred_iterator>;
|
||||
using const_pred_range = iterator_range<const_pred_iterator>;
|
||||
|
||||
inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
|
||||
inline const_pred_iterator pred_begin(const BasicBlock *BB) {
|
||||
return const_pred_iterator(BB);
|
||||
}
|
||||
inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
|
||||
inline const_pred_iterator pred_end(const BasicBlock *BB) {
|
||||
return const_pred_iterator(BB, true);
|
||||
}
|
||||
inline bool pred_empty(const BasicBlock *BB) {
|
||||
return pred_begin(BB) == pred_end(BB);
|
||||
}
|
||||
/// Get the number of predecessors of \p BB. This is a linear time operation.
|
||||
/// Use \ref BasicBlock::hasNPredecessors() or hasNPredecessorsOrMore if able.
|
||||
inline unsigned pred_size(const BasicBlock *BB) {
|
||||
return std::distance(pred_begin(BB), pred_end(BB));
|
||||
}
|
||||
inline pred_range predecessors(BasicBlock *BB) {
|
||||
return pred_range(pred_begin(BB), pred_end(BB));
|
||||
}
|
||||
inline const_pred_range predecessors(const BasicBlock *BB) {
|
||||
return const_pred_range(pred_begin(BB), pred_end(BB));
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Instruction and BasicBlock succ_iterator helpers
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
template <class InstructionT, class BlockT>
|
||||
class SuccIterator
|
||||
: public iterator_facade_base<SuccIterator<InstructionT, BlockT>,
|
||||
std::random_access_iterator_tag, BlockT, int,
|
||||
BlockT *, BlockT *> {
|
||||
public:
|
||||
using difference_type = int;
|
||||
using pointer = BlockT *;
|
||||
using reference = BlockT *;
|
||||
|
||||
private:
|
||||
InstructionT *Inst;
|
||||
int Idx;
|
||||
using Self = SuccIterator<InstructionT, BlockT>;
|
||||
|
||||
inline bool index_is_valid(int Idx) {
|
||||
// Note that we specially support the index of zero being valid even in the
|
||||
// face of a null instruction.
|
||||
return Idx >= 0 && (Idx == 0 || Idx <= (int)Inst->getNumSuccessors());
|
||||
}
|
||||
|
||||
/// Proxy object to allow write access in operator[]
|
||||
class SuccessorProxy {
|
||||
Self It;
|
||||
|
||||
public:
|
||||
explicit SuccessorProxy(const Self &It) : It(It) {}
|
||||
|
||||
SuccessorProxy(const SuccessorProxy &) = default;
|
||||
|
||||
SuccessorProxy &operator=(SuccessorProxy RHS) {
|
||||
*this = reference(RHS);
|
||||
return *this;
|
||||
}
|
||||
|
||||
SuccessorProxy &operator=(reference RHS) {
|
||||
It.Inst->setSuccessor(It.Idx, RHS);
|
||||
return *this;
|
||||
}
|
||||
|
||||
operator reference() const { return *It; }
|
||||
};
|
||||
|
||||
public:
|
||||
// begin iterator
|
||||
explicit inline SuccIterator(InstructionT *Inst) : Inst(Inst), Idx(0) {}
|
||||
// end iterator
|
||||
inline SuccIterator(InstructionT *Inst, bool) : Inst(Inst) {
|
||||
if (Inst)
|
||||
Idx = Inst->getNumSuccessors();
|
||||
else
|
||||
// Inst == NULL happens, if a basic block is not fully constructed and
|
||||
// consequently getTerminator() returns NULL. In this case we construct
|
||||
// a SuccIterator which describes a basic block that has zero
|
||||
// successors.
|
||||
// Defining SuccIterator for incomplete and malformed CFGs is especially
|
||||
// useful for debugging.
|
||||
Idx = 0;
|
||||
}
|
||||
|
||||
/// This is used to interface between code that wants to
|
||||
/// operate on terminator instructions directly.
|
||||
int getSuccessorIndex() const { return Idx; }
|
||||
|
||||
inline bool operator==(const Self &x) const { return Idx == x.Idx; }
|
||||
|
||||
inline BlockT *operator*() const { return Inst->getSuccessor(Idx); }
|
||||
|
||||
// We use the basic block pointer directly for operator->.
|
||||
inline BlockT *operator->() const { return operator*(); }
|
||||
|
||||
inline bool operator<(const Self &RHS) const {
|
||||
assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
|
||||
return Idx < RHS.Idx;
|
||||
}
|
||||
|
||||
int operator-(const Self &RHS) const {
|
||||
assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
|
||||
return Idx - RHS.Idx;
|
||||
}
|
||||
|
||||
inline Self &operator+=(int RHS) {
|
||||
int NewIdx = Idx + RHS;
|
||||
assert(index_is_valid(NewIdx) && "Iterator index out of bound");
|
||||
Idx = NewIdx;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Self &operator-=(int RHS) { return operator+=(-RHS); }
|
||||
|
||||
// Specially implement the [] operation using a proxy object to support
|
||||
// assignment.
|
||||
inline SuccessorProxy operator[](int Offset) {
|
||||
Self TmpIt = *this;
|
||||
TmpIt += Offset;
|
||||
return SuccessorProxy(TmpIt);
|
||||
}
|
||||
|
||||
/// Get the source BlockT of this iterator.
|
||||
inline BlockT *getSource() {
|
||||
assert(Inst && "Source not available, if basic block was malformed");
|
||||
return Inst->getParent();
|
||||
}
|
||||
};
|
||||
|
||||
using succ_iterator = SuccIterator<Instruction, BasicBlock>;
|
||||
using const_succ_iterator = SuccIterator<const Instruction, const BasicBlock>;
|
||||
using succ_range = iterator_range<succ_iterator>;
|
||||
using const_succ_range = iterator_range<const_succ_iterator>;
|
||||
|
||||
inline succ_iterator succ_begin(Instruction *I) { return succ_iterator(I); }
|
||||
inline const_succ_iterator succ_begin(const Instruction *I) {
|
||||
return const_succ_iterator(I);
|
||||
}
|
||||
inline succ_iterator succ_end(Instruction *I) { return succ_iterator(I, true); }
|
||||
inline const_succ_iterator succ_end(const Instruction *I) {
|
||||
return const_succ_iterator(I, true);
|
||||
}
|
||||
inline bool succ_empty(const Instruction *I) {
|
||||
return succ_begin(I) == succ_end(I);
|
||||
}
|
||||
inline unsigned succ_size(const Instruction *I) {
|
||||
return std::distance(succ_begin(I), succ_end(I));
|
||||
}
|
||||
inline succ_range successors(Instruction *I) {
|
||||
return succ_range(succ_begin(I), succ_end(I));
|
||||
}
|
||||
inline const_succ_range successors(const Instruction *I) {
|
||||
return const_succ_range(succ_begin(I), succ_end(I));
|
||||
}
|
||||
|
||||
inline succ_iterator succ_begin(BasicBlock *BB) {
|
||||
return succ_iterator(BB->getTerminator());
|
||||
}
|
||||
inline const_succ_iterator succ_begin(const BasicBlock *BB) {
|
||||
return const_succ_iterator(BB->getTerminator());
|
||||
}
|
||||
inline succ_iterator succ_end(BasicBlock *BB) {
|
||||
return succ_iterator(BB->getTerminator(), true);
|
||||
}
|
||||
inline const_succ_iterator succ_end(const BasicBlock *BB) {
|
||||
return const_succ_iterator(BB->getTerminator(), true);
|
||||
}
|
||||
inline bool succ_empty(const BasicBlock *BB) {
|
||||
return succ_begin(BB) == succ_end(BB);
|
||||
}
|
||||
inline unsigned succ_size(const BasicBlock *BB) {
|
||||
return std::distance(succ_begin(BB), succ_end(BB));
|
||||
}
|
||||
inline succ_range successors(BasicBlock *BB) {
|
||||
return succ_range(succ_begin(BB), succ_end(BB));
|
||||
}
|
||||
inline const_succ_range successors(const BasicBlock *BB) {
|
||||
return const_succ_range(succ_begin(BB), succ_end(BB));
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// GraphTraits specializations for basic block graphs (CFGs)
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
// Provide specializations of GraphTraits to be able to treat a function as a
|
||||
// graph of basic blocks...
|
||||
|
||||
template <> struct GraphTraits<BasicBlock*> {
|
||||
using NodeRef = BasicBlock *;
|
||||
using ChildIteratorType = succ_iterator;
|
||||
|
||||
static NodeRef getEntryNode(BasicBlock *BB) { return BB; }
|
||||
static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
|
||||
static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
|
||||
};
|
||||
|
||||
template <> struct GraphTraits<const BasicBlock*> {
|
||||
using NodeRef = const BasicBlock *;
|
||||
using ChildIteratorType = const_succ_iterator;
|
||||
|
||||
static NodeRef getEntryNode(const BasicBlock *BB) { return BB; }
|
||||
|
||||
static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
|
||||
static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
|
||||
};
|
||||
|
||||
// Provide specializations of GraphTraits to be able to treat a function as a
|
||||
// graph of basic blocks... and to walk it in inverse order. Inverse order for
|
||||
// a function is considered to be when traversing the predecessor edges of a BB
|
||||
// instead of the successor edges.
|
||||
//
|
||||
template <> struct GraphTraits<Inverse<BasicBlock*>> {
|
||||
using NodeRef = BasicBlock *;
|
||||
using ChildIteratorType = pred_iterator;
|
||||
|
||||
static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
|
||||
static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
|
||||
static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
|
||||
};
|
||||
|
||||
template <> struct GraphTraits<Inverse<const BasicBlock*>> {
|
||||
using NodeRef = const BasicBlock *;
|
||||
using ChildIteratorType = const_pred_iterator;
|
||||
|
||||
static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; }
|
||||
static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
|
||||
static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
|
||||
};
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// GraphTraits specializations for function basic block graphs (CFGs)
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
// Provide specializations of GraphTraits to be able to treat a function as a
|
||||
// graph of basic blocks... these are the same as the basic block iterators,
|
||||
// except that the root node is implicitly the first node of the function.
|
||||
//
|
||||
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
|
||||
static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); }
|
||||
|
||||
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
|
||||
using nodes_iterator = pointer_iterator<Function::iterator>;
|
||||
|
||||
static nodes_iterator nodes_begin(Function *F) {
|
||||
return nodes_iterator(F->begin());
|
||||
}
|
||||
|
||||
static nodes_iterator nodes_end(Function *F) {
|
||||
return nodes_iterator(F->end());
|
||||
}
|
||||
|
||||
static size_t size(Function *F) { return F->size(); }
|
||||
};
|
||||
template <> struct GraphTraits<const Function*> :
|
||||
public GraphTraits<const BasicBlock*> {
|
||||
static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); }
|
||||
|
||||
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
|
||||
using nodes_iterator = pointer_iterator<Function::const_iterator>;
|
||||
|
||||
static nodes_iterator nodes_begin(const Function *F) {
|
||||
return nodes_iterator(F->begin());
|
||||
}
|
||||
|
||||
static nodes_iterator nodes_end(const Function *F) {
|
||||
return nodes_iterator(F->end());
|
||||
}
|
||||
|
||||
static size_t size(const Function *F) { return F->size(); }
|
||||
};
|
||||
|
||||
// Provide specializations of GraphTraits to be able to treat a function as a
|
||||
// graph of basic blocks... and to walk it in inverse order. Inverse order for
|
||||
// a function is considered to be when traversing the predecessor edges of a BB
|
||||
// instead of the successor edges.
|
||||
//
|
||||
template <> struct GraphTraits<Inverse<Function*>> :
|
||||
public GraphTraits<Inverse<BasicBlock*>> {
|
||||
static NodeRef getEntryNode(Inverse<Function *> G) {
|
||||
return &G.Graph->getEntryBlock();
|
||||
}
|
||||
};
|
||||
template <> struct GraphTraits<Inverse<const Function*>> :
|
||||
public GraphTraits<Inverse<const BasicBlock*>> {
|
||||
static NodeRef getEntryNode(Inverse<const Function *> G) {
|
||||
return &G.Graph->getEntryBlock();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_IR_CFG_H
|
||||
Reference in New Issue
Block a user