mirror of
https://github.com/hedge-dev/XenonRecomp.git
synced 2025-12-11 14:34:58 +00:00
Initial Commit
This commit is contained in:
575
thirdparty/capstone/suite/synctools/tablegen/include/llvm/IR/ConstantRange.h
vendored
Normal file
575
thirdparty/capstone/suite/synctools/tablegen/include/llvm/IR/ConstantRange.h
vendored
Normal file
@@ -0,0 +1,575 @@
|
||||
//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Represent a range of possible values that may occur when the program is run
|
||||
// for an integral value. This keeps track of a lower and upper bound for the
|
||||
// constant, which MAY wrap around the end of the numeric range. To do this, it
|
||||
// keeps track of a [lower, upper) bound, which specifies an interval just like
|
||||
// STL iterators. When used with boolean values, the following are important
|
||||
// ranges: :
|
||||
//
|
||||
// [F, F) = {} = Empty set
|
||||
// [T, F) = {T}
|
||||
// [F, T) = {F}
|
||||
// [T, T) = {F, T} = Full set
|
||||
//
|
||||
// The other integral ranges use min/max values for special range values. For
|
||||
// example, for 8-bit types, it uses:
|
||||
// [0, 0) = {} = Empty set
|
||||
// [255, 255) = {0..255} = Full Set
|
||||
//
|
||||
// Note that ConstantRange can be used to represent either signed or
|
||||
// unsigned ranges.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_IR_CONSTANTRANGE_H
|
||||
#define LLVM_IR_CONSTANTRANGE_H
|
||||
|
||||
#include "llvm/ADT/APInt.h"
|
||||
#include "llvm/IR/InstrTypes.h"
|
||||
#include "llvm/IR/Instruction.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include <cstdint>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class MDNode;
|
||||
class raw_ostream;
|
||||
struct KnownBits;
|
||||
|
||||
/// This class represents a range of values.
|
||||
class LLVM_NODISCARD ConstantRange {
|
||||
APInt Lower, Upper;
|
||||
|
||||
/// Create empty constant range with same bitwidth.
|
||||
ConstantRange getEmpty() const {
|
||||
return ConstantRange(getBitWidth(), false);
|
||||
}
|
||||
|
||||
/// Create full constant range with same bitwidth.
|
||||
ConstantRange getFull() const {
|
||||
return ConstantRange(getBitWidth(), true);
|
||||
}
|
||||
|
||||
public:
|
||||
/// Initialize a full or empty set for the specified bit width.
|
||||
explicit ConstantRange(uint32_t BitWidth, bool isFullSet);
|
||||
|
||||
/// Initialize a range to hold the single specified value.
|
||||
ConstantRange(APInt Value);
|
||||
|
||||
/// Initialize a range of values explicitly. This will assert out if
|
||||
/// Lower==Upper and Lower != Min or Max value for its type. It will also
|
||||
/// assert out if the two APInt's are not the same bit width.
|
||||
ConstantRange(APInt Lower, APInt Upper);
|
||||
|
||||
/// Create empty constant range with the given bit width.
|
||||
static ConstantRange getEmpty(uint32_t BitWidth) {
|
||||
return ConstantRange(BitWidth, false);
|
||||
}
|
||||
|
||||
/// Create full constant range with the given bit width.
|
||||
static ConstantRange getFull(uint32_t BitWidth) {
|
||||
return ConstantRange(BitWidth, true);
|
||||
}
|
||||
|
||||
/// Create non-empty constant range with the given bounds. If Lower and
|
||||
/// Upper are the same, a full range is returned.
|
||||
static ConstantRange getNonEmpty(APInt Lower, APInt Upper) {
|
||||
if (Lower == Upper)
|
||||
return getFull(Lower.getBitWidth());
|
||||
return ConstantRange(std::move(Lower), std::move(Upper));
|
||||
}
|
||||
|
||||
/// Initialize a range based on a known bits constraint. The IsSigned flag
|
||||
/// indicates whether the constant range should not wrap in the signed or
|
||||
/// unsigned domain.
|
||||
static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned);
|
||||
|
||||
/// Produce the smallest range such that all values that may satisfy the given
|
||||
/// predicate with any value contained within Other is contained in the
|
||||
/// returned range. Formally, this returns a superset of
|
||||
/// 'union over all y in Other . { x : icmp op x y is true }'. If the exact
|
||||
/// answer is not representable as a ConstantRange, the return value will be a
|
||||
/// proper superset of the above.
|
||||
///
|
||||
/// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
|
||||
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
|
||||
const ConstantRange &Other);
|
||||
|
||||
/// Produce the largest range such that all values in the returned range
|
||||
/// satisfy the given predicate with all values contained within Other.
|
||||
/// Formally, this returns a subset of
|
||||
/// 'intersection over all y in Other . { x : icmp op x y is true }'. If the
|
||||
/// exact answer is not representable as a ConstantRange, the return value
|
||||
/// will be a proper subset of the above.
|
||||
///
|
||||
/// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
|
||||
static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
|
||||
const ConstantRange &Other);
|
||||
|
||||
/// Produce the exact range such that all values in the returned range satisfy
|
||||
/// the given predicate with any value contained within Other. Formally, this
|
||||
/// returns the exact answer when the superset of 'union over all y in Other
|
||||
/// is exactly same as the subset of intersection over all y in Other.
|
||||
/// { x : icmp op x y is true}'.
|
||||
///
|
||||
/// Example: Pred = ult and Other = i8 3 returns [0, 3)
|
||||
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
|
||||
const APInt &Other);
|
||||
|
||||
/// Does the predicate \p Pred hold between ranges this and \p Other?
|
||||
/// NOTE: false does not mean that inverse predicate holds!
|
||||
bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const;
|
||||
|
||||
/// Return true iff CR1 ult CR2 is equivalent to CR1 slt CR2.
|
||||
/// Does not depend on strictness/direction of the predicate.
|
||||
static bool
|
||||
areInsensitiveToSignednessOfICmpPredicate(const ConstantRange &CR1,
|
||||
const ConstantRange &CR2);
|
||||
|
||||
/// Return true iff CR1 ult CR2 is equivalent to CR1 sge CR2.
|
||||
/// Does not depend on strictness/direction of the predicate.
|
||||
static bool
|
||||
areInsensitiveToSignednessOfInvertedICmpPredicate(const ConstantRange &CR1,
|
||||
const ConstantRange &CR2);
|
||||
|
||||
/// If the comparison between constant ranges this and Other
|
||||
/// is insensitive to the signedness of the comparison predicate,
|
||||
/// return a predicate equivalent to \p Pred, with flipped signedness
|
||||
/// (i.e. unsigned instead of signed or vice versa), and maybe inverted,
|
||||
/// otherwise returns CmpInst::Predicate::BAD_ICMP_PREDICATE.
|
||||
static CmpInst::Predicate
|
||||
getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred,
|
||||
const ConstantRange &CR1,
|
||||
const ConstantRange &CR2);
|
||||
|
||||
/// Produce the largest range containing all X such that "X BinOp Y" is
|
||||
/// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may
|
||||
/// be *some* Y in Other for which additional X not contained in the result
|
||||
/// also do not overflow.
|
||||
///
|
||||
/// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap.
|
||||
///
|
||||
/// Examples:
|
||||
/// typedef OverflowingBinaryOperator OBO;
|
||||
/// #define MGNR makeGuaranteedNoWrapRegion
|
||||
/// MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
|
||||
/// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
|
||||
/// MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
|
||||
/// MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
|
||||
/// MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
|
||||
/// MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
|
||||
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
|
||||
const ConstantRange &Other,
|
||||
unsigned NoWrapKind);
|
||||
|
||||
/// Produce the range that contains X if and only if "X BinOp Other" does
|
||||
/// not wrap.
|
||||
static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
|
||||
const APInt &Other,
|
||||
unsigned NoWrapKind);
|
||||
|
||||
/// Returns true if ConstantRange calculations are supported for intrinsic
|
||||
/// with \p IntrinsicID.
|
||||
static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID);
|
||||
|
||||
/// Compute range of intrinsic result for the given operand ranges.
|
||||
static ConstantRange intrinsic(Intrinsic::ID IntrinsicID,
|
||||
ArrayRef<ConstantRange> Ops);
|
||||
|
||||
/// Set up \p Pred and \p RHS such that
|
||||
/// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this. Return true if
|
||||
/// successful.
|
||||
bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
|
||||
|
||||
/// Set up \p Pred, \p RHS and \p Offset such that (V + Offset) Pred RHS
|
||||
/// is true iff V is in the range. Prefers using Offset == 0 if possible.
|
||||
void
|
||||
getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS, APInt &Offset) const;
|
||||
|
||||
/// Return the lower value for this range.
|
||||
const APInt &getLower() const { return Lower; }
|
||||
|
||||
/// Return the upper value for this range.
|
||||
const APInt &getUpper() const { return Upper; }
|
||||
|
||||
/// Get the bit width of this ConstantRange.
|
||||
uint32_t getBitWidth() const { return Lower.getBitWidth(); }
|
||||
|
||||
/// Return true if this set contains all of the elements possible
|
||||
/// for this data-type.
|
||||
bool isFullSet() const;
|
||||
|
||||
/// Return true if this set contains no members.
|
||||
bool isEmptySet() const;
|
||||
|
||||
/// Return true if this set wraps around the unsigned domain. Special cases:
|
||||
/// * Empty set: Not wrapped.
|
||||
/// * Full set: Not wrapped.
|
||||
/// * [X, 0) == [X, Max]: Not wrapped.
|
||||
bool isWrappedSet() const;
|
||||
|
||||
/// Return true if the exclusive upper bound wraps around the unsigned
|
||||
/// domain. Special cases:
|
||||
/// * Empty set: Not wrapped.
|
||||
/// * Full set: Not wrapped.
|
||||
/// * [X, 0): Wrapped.
|
||||
bool isUpperWrapped() const;
|
||||
|
||||
/// Return true if this set wraps around the signed domain. Special cases:
|
||||
/// * Empty set: Not wrapped.
|
||||
/// * Full set: Not wrapped.
|
||||
/// * [X, SignedMin) == [X, SignedMax]: Not wrapped.
|
||||
bool isSignWrappedSet() const;
|
||||
|
||||
/// Return true if the (exclusive) upper bound wraps around the signed
|
||||
/// domain. Special cases:
|
||||
/// * Empty set: Not wrapped.
|
||||
/// * Full set: Not wrapped.
|
||||
/// * [X, SignedMin): Wrapped.
|
||||
bool isUpperSignWrapped() const;
|
||||
|
||||
/// Return true if the specified value is in the set.
|
||||
bool contains(const APInt &Val) const;
|
||||
|
||||
/// Return true if the other range is a subset of this one.
|
||||
bool contains(const ConstantRange &CR) const;
|
||||
|
||||
/// If this set contains a single element, return it, otherwise return null.
|
||||
const APInt *getSingleElement() const {
|
||||
if (Upper == Lower + 1)
|
||||
return &Lower;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/// If this set contains all but a single element, return it, otherwise return
|
||||
/// null.
|
||||
const APInt *getSingleMissingElement() const {
|
||||
if (Lower == Upper + 1)
|
||||
return &Upper;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/// Return true if this set contains exactly one member.
|
||||
bool isSingleElement() const { return getSingleElement() != nullptr; }
|
||||
|
||||
/// Compare set size of this range with the range CR.
|
||||
bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
|
||||
|
||||
/// Compare set size of this range with Value.
|
||||
bool isSizeLargerThan(uint64_t MaxSize) const;
|
||||
|
||||
/// Return true if all values in this range are negative.
|
||||
bool isAllNegative() const;
|
||||
|
||||
/// Return true if all values in this range are non-negative.
|
||||
bool isAllNonNegative() const;
|
||||
|
||||
/// Return the largest unsigned value contained in the ConstantRange.
|
||||
APInt getUnsignedMax() const;
|
||||
|
||||
/// Return the smallest unsigned value contained in the ConstantRange.
|
||||
APInt getUnsignedMin() const;
|
||||
|
||||
/// Return the largest signed value contained in the ConstantRange.
|
||||
APInt getSignedMax() const;
|
||||
|
||||
/// Return the smallest signed value contained in the ConstantRange.
|
||||
APInt getSignedMin() const;
|
||||
|
||||
/// Return true if this range is equal to another range.
|
||||
bool operator==(const ConstantRange &CR) const {
|
||||
return Lower == CR.Lower && Upper == CR.Upper;
|
||||
}
|
||||
bool operator!=(const ConstantRange &CR) const {
|
||||
return !operator==(CR);
|
||||
}
|
||||
|
||||
/// Compute the maximal number of active bits needed to represent every value
|
||||
/// in this range.
|
||||
unsigned getActiveBits() const;
|
||||
|
||||
/// Compute the maximal number of bits needed to represent every value
|
||||
/// in this signed range.
|
||||
unsigned getMinSignedBits() const;
|
||||
|
||||
/// Subtract the specified constant from the endpoints of this constant range.
|
||||
ConstantRange subtract(const APInt &CI) const;
|
||||
|
||||
/// Subtract the specified range from this range (aka relative complement of
|
||||
/// the sets).
|
||||
ConstantRange difference(const ConstantRange &CR) const;
|
||||
|
||||
/// If represented precisely, the result of some range operations may consist
|
||||
/// of multiple disjoint ranges. As only a single range may be returned, any
|
||||
/// range covering these disjoint ranges constitutes a valid result, but some
|
||||
/// may be more useful than others depending on context. The preferred range
|
||||
/// type specifies whether a range that is non-wrapping in the unsigned or
|
||||
/// signed domain, or has the smallest size, is preferred. If a signedness is
|
||||
/// preferred but all ranges are non-wrapping or all wrapping, then the
|
||||
/// smallest set size is preferred. If there are multiple smallest sets, any
|
||||
/// one of them may be returned.
|
||||
enum PreferredRangeType { Smallest, Unsigned, Signed };
|
||||
|
||||
/// Return the range that results from the intersection of this range with
|
||||
/// another range. If the intersection is disjoint, such that two results
|
||||
/// are possible, the preferred range is determined by the PreferredRangeType.
|
||||
ConstantRange intersectWith(const ConstantRange &CR,
|
||||
PreferredRangeType Type = Smallest) const;
|
||||
|
||||
/// Return the range that results from the union of this range
|
||||
/// with another range. The resultant range is guaranteed to include the
|
||||
/// elements of both sets, but may contain more. For example, [3, 9) union
|
||||
/// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
|
||||
/// in either set before.
|
||||
ConstantRange unionWith(const ConstantRange &CR,
|
||||
PreferredRangeType Type = Smallest) const;
|
||||
|
||||
/// Intersect the two ranges and return the result if it can be represented
|
||||
/// exactly, otherwise return None.
|
||||
Optional<ConstantRange> exactIntersectWith(const ConstantRange &CR) const;
|
||||
|
||||
/// Union the two ranges and return the result if it can be represented
|
||||
/// exactly, otherwise return None.
|
||||
Optional<ConstantRange> exactUnionWith(const ConstantRange &CR) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from an application of the specified cast operator to this range. \p
|
||||
/// BitWidth is the target bitwidth of the cast. For casts which don't
|
||||
/// change bitwidth, it must be the same as the source bitwidth. For casts
|
||||
/// which do change bitwidth, the bitwidth must be consistent with the
|
||||
/// requested cast and source bitwidth.
|
||||
ConstantRange castOp(Instruction::CastOps CastOp,
|
||||
uint32_t BitWidth) const;
|
||||
|
||||
/// Return a new range in the specified integer type, which must
|
||||
/// be strictly larger than the current type. The returned range will
|
||||
/// correspond to the possible range of values if the source range had been
|
||||
/// zero extended to BitWidth.
|
||||
ConstantRange zeroExtend(uint32_t BitWidth) const;
|
||||
|
||||
/// Return a new range in the specified integer type, which must
|
||||
/// be strictly larger than the current type. The returned range will
|
||||
/// correspond to the possible range of values if the source range had been
|
||||
/// sign extended to BitWidth.
|
||||
ConstantRange signExtend(uint32_t BitWidth) const;
|
||||
|
||||
/// Return a new range in the specified integer type, which must be
|
||||
/// strictly smaller than the current type. The returned range will
|
||||
/// correspond to the possible range of values if the source range had been
|
||||
/// truncated to the specified type.
|
||||
ConstantRange truncate(uint32_t BitWidth) const;
|
||||
|
||||
/// Make this range have the bit width given by \p BitWidth. The
|
||||
/// value is zero extended, truncated, or left alone to make it that width.
|
||||
ConstantRange zextOrTrunc(uint32_t BitWidth) const;
|
||||
|
||||
/// Make this range have the bit width given by \p BitWidth. The
|
||||
/// value is sign extended, truncated, or left alone to make it that width.
|
||||
ConstantRange sextOrTrunc(uint32_t BitWidth) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from an application of the specified binary operator to an left hand side
|
||||
/// of this range and a right hand side of \p Other.
|
||||
ConstantRange binaryOp(Instruction::BinaryOps BinOp,
|
||||
const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from an application of the specified overflowing binary operator to a
|
||||
/// left hand side of this range and a right hand side of \p Other given
|
||||
/// the provided knowledge about lack of wrapping \p NoWrapKind.
|
||||
ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp,
|
||||
const ConstantRange &Other,
|
||||
unsigned NoWrapKind) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from an addition of a value in this range and a value in \p Other.
|
||||
ConstantRange add(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from an addition with wrap type \p NoWrapKind of a value in this
|
||||
/// range and a value in \p Other.
|
||||
/// If the result range is disjoint, the preferred range is determined by the
|
||||
/// \p PreferredRangeType.
|
||||
ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
|
||||
PreferredRangeType RangeType = Smallest) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from a subtraction of a value in this range and a value in \p Other.
|
||||
ConstantRange sub(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from an subtraction with wrap type \p NoWrapKind of a value in this
|
||||
/// range and a value in \p Other.
|
||||
/// If the result range is disjoint, the preferred range is determined by the
|
||||
/// \p PreferredRangeType.
|
||||
ConstantRange subWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
|
||||
PreferredRangeType RangeType = Smallest) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from a multiplication of a value in this range and a value in \p Other,
|
||||
/// treating both this and \p Other as unsigned ranges.
|
||||
ConstantRange multiply(const ConstantRange &Other) const;
|
||||
|
||||
/// Return range of possible values for a signed multiplication of this and
|
||||
/// \p Other. However, if overflow is possible always return a full range
|
||||
/// rather than trying to determine a more precise result.
|
||||
ConstantRange smul_fast(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from a signed maximum of a value in this range and a value in \p Other.
|
||||
ConstantRange smax(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from an unsigned maximum of a value in this range and a value in \p Other.
|
||||
ConstantRange umax(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from a signed minimum of a value in this range and a value in \p Other.
|
||||
ConstantRange smin(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from an unsigned minimum of a value in this range and a value in \p Other.
|
||||
ConstantRange umin(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from an unsigned division of a value in this range and a value in
|
||||
/// \p Other.
|
||||
ConstantRange udiv(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from a signed division of a value in this range and a value in
|
||||
/// \p Other. Division by zero and division of SignedMin by -1 are considered
|
||||
/// undefined behavior, in line with IR, and do not contribute towards the
|
||||
/// result.
|
||||
ConstantRange sdiv(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from an unsigned remainder operation of a value in this range and a
|
||||
/// value in \p Other.
|
||||
ConstantRange urem(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from a signed remainder operation of a value in this range and a
|
||||
/// value in \p Other.
|
||||
ConstantRange srem(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting from
|
||||
/// a binary-xor of a value in this range by an all-one value,
|
||||
/// aka bitwise complement operation.
|
||||
ConstantRange binaryNot() const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from a binary-and of a value in this range by a value in \p Other.
|
||||
ConstantRange binaryAnd(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from a binary-or of a value in this range by a value in \p Other.
|
||||
ConstantRange binaryOr(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from a binary-xor of a value in this range by a value in \p Other.
|
||||
ConstantRange binaryXor(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting
|
||||
/// from a left shift of a value in this range by a value in \p Other.
|
||||
/// TODO: This isn't fully implemented yet.
|
||||
ConstantRange shl(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting from a
|
||||
/// logical right shift of a value in this range and a value in \p Other.
|
||||
ConstantRange lshr(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range representing the possible values resulting from a
|
||||
/// arithmetic right shift of a value in this range and a value in \p Other.
|
||||
ConstantRange ashr(const ConstantRange &Other) const;
|
||||
|
||||
/// Perform an unsigned saturating addition of two constant ranges.
|
||||
ConstantRange uadd_sat(const ConstantRange &Other) const;
|
||||
|
||||
/// Perform a signed saturating addition of two constant ranges.
|
||||
ConstantRange sadd_sat(const ConstantRange &Other) const;
|
||||
|
||||
/// Perform an unsigned saturating subtraction of two constant ranges.
|
||||
ConstantRange usub_sat(const ConstantRange &Other) const;
|
||||
|
||||
/// Perform a signed saturating subtraction of two constant ranges.
|
||||
ConstantRange ssub_sat(const ConstantRange &Other) const;
|
||||
|
||||
/// Perform an unsigned saturating multiplication of two constant ranges.
|
||||
ConstantRange umul_sat(const ConstantRange &Other) const;
|
||||
|
||||
/// Perform a signed saturating multiplication of two constant ranges.
|
||||
ConstantRange smul_sat(const ConstantRange &Other) const;
|
||||
|
||||
/// Perform an unsigned saturating left shift of this constant range by a
|
||||
/// value in \p Other.
|
||||
ConstantRange ushl_sat(const ConstantRange &Other) const;
|
||||
|
||||
/// Perform a signed saturating left shift of this constant range by a
|
||||
/// value in \p Other.
|
||||
ConstantRange sshl_sat(const ConstantRange &Other) const;
|
||||
|
||||
/// Return a new range that is the logical not of the current set.
|
||||
ConstantRange inverse() const;
|
||||
|
||||
/// Calculate absolute value range. If the original range contains signed
|
||||
/// min, then the resulting range will contain signed min if and only if
|
||||
/// \p IntMinIsPoison is false.
|
||||
ConstantRange abs(bool IntMinIsPoison = false) const;
|
||||
|
||||
/// Represents whether an operation on the given constant range is known to
|
||||
/// always or never overflow.
|
||||
enum class OverflowResult {
|
||||
/// Always overflows in the direction of signed/unsigned min value.
|
||||
AlwaysOverflowsLow,
|
||||
/// Always overflows in the direction of signed/unsigned max value.
|
||||
AlwaysOverflowsHigh,
|
||||
/// May or may not overflow.
|
||||
MayOverflow,
|
||||
/// Never overflows.
|
||||
NeverOverflows,
|
||||
};
|
||||
|
||||
/// Return whether unsigned add of the two ranges always/never overflows.
|
||||
OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const;
|
||||
|
||||
/// Return whether signed add of the two ranges always/never overflows.
|
||||
OverflowResult signedAddMayOverflow(const ConstantRange &Other) const;
|
||||
|
||||
/// Return whether unsigned sub of the two ranges always/never overflows.
|
||||
OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const;
|
||||
|
||||
/// Return whether signed sub of the two ranges always/never overflows.
|
||||
OverflowResult signedSubMayOverflow(const ConstantRange &Other) const;
|
||||
|
||||
/// Return whether unsigned mul of the two ranges always/never overflows.
|
||||
OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const;
|
||||
|
||||
/// Print out the bounds to a stream.
|
||||
void print(raw_ostream &OS) const;
|
||||
|
||||
/// Allow printing from a debugger easily.
|
||||
void dump() const;
|
||||
};
|
||||
|
||||
inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
|
||||
CR.print(OS);
|
||||
return OS;
|
||||
}
|
||||
|
||||
/// Parse out a conservative ConstantRange from !range metadata.
|
||||
///
|
||||
/// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
|
||||
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_IR_CONSTANTRANGE_H
|
||||
Reference in New Issue
Block a user